Biomedical Science BSc (Hons)

Teaching Excellence Framework (TEF) Gold award

Teaching Excellence Framework (TEF) Gold award

Our commitment to high quality teaching has been recognised with a TEF Gold rating. The University has received an overall rating of Gold, as well as securing a Gold award in the framework's two new student experience and student outcomes categories.

Why choose this course?

Biomedical Science is a course that covers a huge range of topics, such as cancer screening, diagnosing HIV, blood transfusion, the control of infections, immunology and conditions such as cancer and heart disease. It could be the ideal course for you if you enjoy laboratory investigation and the monitoring of diseases. This degree is accredited by the Institute of Biomedical Science (IBMS).

You'll be introduced to biological and chemical principles, molecular and cell biology, physiology, anatomy, biochemistry, and relevant laboratory techniques.

You'll also independently research a subject that interests you. This might include a laboratory-based project, analysis of survey information, or a review of scientific literature.

We have updated our modules to enhance student-centred teaching and align course content with industry needs, helping you become a future-proof graduate.

Attendance UCAS code/apply Year of entry
3 years full time B930 2025
4 years full time with professional placement B931 2025
4 years full time including foundation year B948 2025

Please note: Teaching on this course may take place on more than one KU campus.

Main Location Penrhyn Road

Accreditation

IBMS logo

We are currently accredited by the Institute of Biomedical Science (IBMS). The IBMS Training Portfolio can potentially be completed during the placement year of the four-year sandwich course (B931); however, the majority of students undertake this after graduation, once in appropriate employment. This course is not approved by the Health and Care Professions Council (HCPC) for Registration. However, when put together with completion of the IBMS's Registration Training Portfolio, it does provide eligibility to apply for HCPC Registration as a Biomedical Scientist.

Reasons to choose Kingston University

  • This degree is accredited by the Institute of Biomedical Science (IBMS). If you also complete the IBMS Training Portfolio, you can apply to register as a Biomedical Scientist with the Health and Care Professions Council (HCPC).
  • You'll gain first-hand experience of a busy research or diagnostic laboratory.
  • There is an opportunity to do a placement year in NHS laboratories, research institutes or drug companies.
  • 96.2% of students thought staff were good at explaining things (NSS 2023).

What you will study

Year 1

Year 2

Year 3

Year 1 offers a firm foundation in the biological and chemical principles upon which biomedical science is based, including various laboratory techniques. You will be introduced to molecular and cell biology, physiology, anatomy and biochemistry.

Core modules

Biochemistry for Biomedical Science

30 credits

This module provides an understanding of how basic chemical elements are bonded to form complex biomolecules in living systems. In this module, we will explore the role and structure of proteins, carbohydrates and lipids and delve into defining their properties and functions. The module will also introduce the vital role of energy transformations in living organisms.

Core material is delivered through lectures, online resources and activities, and problem-solving workshops supported by laboratory practicals and subsequent data analysis.

On completion of the module, you will have a comprehensive grounding in the molecular basis of life from the atomic scale up to cells. This module will help you develop the skills necessary for enhancing your learning through effective note-taking and critical thinking, which will continue to help you throughout your degree.

Genes, Cells and Tissues

30 credits

This module introduces you to basic cell biology of prokaryotes and eukaryotes, genetics, germ layers and tissue types in the human body, as well as in various microorganisms.

You will experience practical sessions, in a state-of-the-art laboratory, on microscopy histology, cytogenetics and microbiology, enabling you to develop practical skills in the correct use of microscopes, examining and studying chromosomes, prokaryotic and eukaryotic cells, microbes and tissues, interpreting, and recording, biological data, and build upon your knowledge gained from lectures.

This module provides a foundation for advanced modules in cell biology, anatomy, physiology, genetics and microbiology.

Human Physiology and Anatomy

30 credits

This module provides you with a dynamic exploration of how human physiology and anatomy work together to underpin health, movement, and physical performance. You will investigate how key physiological systems like the cardiovascular, muscular, and nervous systems work together, while exploring the principles of biomechanics to understand how the body moves and adapts to homeostatic challenges.

Through hands-on labs and workshops, you will develop practical skills in data collection, experimental design, and analysis, learning how to measure and evaluate human performance. By the end of this module, you will have a solid grasp of how human physiology and anatomy are studied and how they relate to broader issues like sustainability and human health.

Scientific and Laboratory Skills

30 credits

This module provides a firm foundation in the general scientific and laboratory skills students require to successfully complete their programmes of study.

A significant component of the module consists of the development and demonstration of core technical/practical skills through familiarity with the laboratory environment through hands-on learning.

This module will also introduce you to Future Skills through engagement with the Navigate programme introducing the key graduate attributes required in developing your professional development portfolio in the biosciences. The Future Skills concepts and activities will support you in developing and evidencing your practice, scientific analytical/problem-solving, teamworking, digital competency, practical and numeracy skills.

You will be supported by themed tutor meetings and peer support tutee teams, enabling you to work on tasks to develop your graduate attributes.

Year 2 includes in-depth study of the more specialised aspects of biomedical science, particularly the nature and effects of human disease. You will develop your knowledge of microbiology and immunology and the cellular pathological changes that occur in medical conditions such as cancer and heart disease. You will learn about medical genetics, including a range of genetic diseases and disorders, and how to identify them.

Core modules

Infection and Immunity

30 credits

This module delves into the fascinating world of microorganisms, that play a big role in health and disease. We'll explore how our immune system responds to these microscopic agents. Through interactive lectures and workshops, we'll examine various microbiological processes. You will learn about controlling these organisms in laboratory settings and within patients. You will also become familiar with the immune system's different cells and organs, understanding how they work together to protect the body from infections upon first exposure and during subsequent encounters. Lastly, we'll introduce some of the molecular processes and signalling events crucial for communication between human immune cells.

Medical Genetics

30 credits

You will be introduced to the molecular and cellular basis of human diseases. This module covers basic concepts of inheritance patterns, population genetics and genetic disorders including single-gene disorders, chromosomal imbalances, epigenetics, and complex disorders. You will learn about molecular genetics techniques, genetic testing and counselling, pharmacogenomics, and personalised medicine.

The module covers basic bioinformatic tools and computational techniques used in analysing large volumes of biological data that help in the identification of genetic variations and their influence on disease processes. You will also be introduced to cutting-edge advancements in the field including gene therapy and editing, single-cell sequencing, and omics technologies. You will gain insight into how these technologies are shaping the future of medical genetics research and clinical practice.

Medical Physiology, Research Methods and Skills

30 credits

This module is divided into two distinct parts. The first part is designed to enhance your understanding of the recurring physiological themes in non-communicable diseases, relating physiological systems to prevalent chronic diseases and likely mechanisms involved. Topics such as endocrinology and metabolic disease neurophysiology, cardiovascular, reproductive, renal and respiratory physiology will be covered. You will gain an insight into the clinical relevance of medical physiology and its direct application to patient care and medical practice through practical experience and interpreting results of essential clinical practice and research-based laboratory skills.

The second part broadens the scope to encompass the wider aspects of biomedical science and beyond. It focuses on developing your Future Skills by engaging them with Explore, enhancing your research, problem-solving, and critical thinking abilities, and preparing you for your final year capstone project. This is further supported by tutor meetings, which help you work on tasks to develop, articulate, and reflect on their progress and graduate attributes. The Future Skills learning outcomes are integrated into this module.

Pathobiology

30 credits

This module discusses the fascinating world of cellular mechanisms of disease and explore how cellular pathology integrates with clinical pathology and other disciplines. Particular emphasis is given to hand-on laboratory techniques to understand cellular injury and its role in routine diagnosis. By the end of the module, you will understand the effects of cell injury, inflammation, cancer, infertility, and genetic diseases on cells. You will learn how cellular pathology and diagnostic techniques contribute to disease identification and the development of research-informed treatments, preparing you for bright and impactful careers in science.

Year 3 consists of specialist modules covering the theoretical and practical aspects of the major branches of biomedical science. These include clinical chemistry and haematology, clinical immunology and medical microbiology. The Clinical Applications of Biomedical Science module includes clinical case studies, integrating diagnostic procedures from across the course and developing awareness of contemporary issues within biomedical science.

Year 3 also includes a research project. This may be undertaken in University research laboratories or in a hospital or medical research laboratory. It enables you to carry out independent research in a subject that interests you, and gain first-hand experience of a busy research or diagnostic laboratory. The project could also be data analysis of survey information or a systematic review of scientific literature.

Core modules

Clinical Applications of Biomedical Sciences

30 credits

This module provides you with the opportunity to integrate the knowledge you have gained from all other modules on the Biomedical Science course. We will use case studies to provide an overview of biomedical techniques, including the use of point of care testing (POC) and traditional laboratory diagnosis.

You will examine their applications in clinical diagnosis, prognosis, and patient management, including drug interactions and the basis of individual variation in drug responsiveness. The use of pertinent clinical cases encourages you to think 'outside the box' and realise that when dealing with a real patient, knowledge gained from the discipline is required simultaneously to make a rational diagnosis.

The module will also examine the importance of "quality control" (QC) and "quality assurance" (QA) in clinical diagnosis enabling you to understand the importance of both QC and QA in the correct day to day running of clinical diagnostics. The Future Skills Apply learning outcomes are delivered in this module.

Clinical Biochemistry, Haematology and Transfusion Science

30 credits

In this course, we explore how laboratory investigations contribute to diagnosing, treating, and preventing diseases like renal disease, diabetes, anaemia, and haematological malignancies. Additionally, we delve into the role of transfusion laboratories in treating specific disorders.

The module kicks off with structured lectures, introducing various topics. These concepts are then further explored during practical laboratory sessions and workshops. You will find additional resources on Canvas, including tutorials to reinforce your understanding of key ideas.

Throughout the course, real-life case studies illustrate best practices in clinical chemistry and haematology. Expert practitioners also deliver keynote lectures, enriching your learning experience. Plus, we emphasise equipping you with the knowledge and practical skills sought after by employers.

Clinical Immunology and Medical Microbiology

30 credits

In this module, we delve into disease related to overactive immunity (such as autoimmune disease and hypersensitivity) and immune deficiency (like AIDS). Additionally, we explore critical aspects of clinical immunology, including cancer immunology, monoclonal antibodies and laboratory diagnostics through case studies.

We then shift focus to infectious diseases and the principles of Medical Microbiology. We take an organ system approach to study selected infectious diseases and their laboratory diagnosis, for example examining infections affecting the respiratory tract, gastrointestinal tract, and urinary tract.

Project (Bioscience)

30 credits

Your independent project forms a very important part of your degree programme. There are several types of projects that may be offered to you: a laboratory or field-based project, data projects involving acquisition of data and information from surveys, computer simulations or bioinformatics, or a systematic review of research literature that includes the collection, analysis, and original presentation of reported research data.

Your project will include a review and critical evaluation of qualitative and quantitative information and data to address a hypothesis or research question, and the production of a written report.

Foundation year

If you would like to study one of our science degrees at Kingston University but are not yet ready to join the first year of a BSc (Hons) course, you can include an extra foundation year within your chosen degree. Please see the science foundation year course page for details of modules.

Future Skills

Knowledge to give you the edge

Embedded within every course curriculum and throughout the whole Kingston experience, Future Skills will play a role in shaping you to become a future-proof graduate, providing you with the skills most valued by employers such as problem-solving, digital competency, and adaptability.

As you progress through your degree, you'll learn to navigate, explore and apply these graduate skills, learning to demonstrate and articulate to employers how future skills give you the edge.

At Kingston University, we're not just keeping up with change, we're creating it.

A female engineering student, in the engineering lab.

Entry requirements

Typical offer 2025

  • Degree 112-128 UCAS points from a minimum of three A-levels or equivalent Level 3 qualifications; Degree with foundation year 64.
  • A-level in Biology or Human Biology at grade C or above.

Alternatively, BTEC Extended Diploma in appropriate Science subject such as Science, Life Science, Applied Science, Medical Science or Forensic Science with grades DMM - DDM.

Candidates are normally required to hold GCSE Mathematics at grade C/4 or above.

Typical offer 2024

  • Degree 112-128 UCAS points from a minimum of three A-levels or equivalent Level 3 qualifications; Degree with foundation year 64.
  • A-levels to include Biology or Human Biology with a minimum of a grade C and at least one other science subject (Chemistry, Mathematics, Physics, Psychology, Further Mathematics, Statistics or Marine Science). General Studies not accepted.

Alternatively, BTEC Extended Diploma in appropriate Science subject such as Science, Life Science, Applied Science, Medical Science or Forensic Science with grades DMM - DDM.

Candidates are normally required to hold five GCSE subjects at grade C/4 or above, including Mathematics and English Language.

Additional requirements

Entry on to this course does not require an interview, entrance test, audition or portfolio.

Alternative routes

We will consider a range of alternative Level 3 qualifications such as an Access Course in a relevant Science subject e.g. Biomedical Science, Forensic Science, Medicine and Medical, Biosciences, Pharmacy and Biomedical Sciences, Science, Applied Science, Health and Human Sciences or Health Professions, which has been passed with 112 UCAS points.

Applications from those that have undertaken a Science foundation year will also be considered.

International

We welcome applications from International Applicants. View our standard entry requirements from your country.

All non-UK applicants must meet our English language requirements. For this course it is Academic IELTS of 6.0, with no element below 5.5.

Country-specific information

You will find more information on country specific entry requirements in the International section of our website.

Find your country:

Typical offer and UCAS points explained

Like most universities, we use the UCAS Tariff point system for our course entry requirements.

Find out more about UCAS Tariff points and see how A-level, AS level, BTEC Diploma and T-level qualifications translate to the points system.

Teaching and assessment

Scheduled learning and teaching on this course includes timetabled activities including lectures, seminars and small group tutorials.

It may also include placements, project work, practical sessions, workshops, conferences and field trips.

Guided independent study (self-managed time)

Outside the scheduled learning and teaching hours, you will learn independently through self-study which will involve reading articles and books, working on projects, undertaking research, preparing for and completing your work for assessments. Some independent study work may need to be completed on-campus, as you may need to access campus-based facilities such as studios and labs.

Academic support

Our academic support team here at Kingston University provides help in a range of areas.

Dedicated personal tutor

When you arrive, we'll introduce you to your personal tutor. This is the member of academic staff who will provide academic guidance, be a support throughout your time at Kingston and show you how to make the best use of all the help and resources that we offer at Kingston University.

Your workload

A course is made up of modules, and each module is worth a number of credits. You must pass a given number of credits in order to achieve the award you registered on, for example 360 credits for a typical undergraduate course or 180 credits for a typical postgraduate course. The number of credits you need for your award is detailed in the programme specification which you can access from the link at the bottom of this page.

One credit equates to 10 hours of study. Therefore 120 credits across a year (typical for an undergraduate course) would equate to 1,200 notional hours. These hours are split into scheduled and guided. On this course, the percentage of that time that will be scheduled learning and teaching activities is shown below for each year of study. The remainder is made up of guided independent study.

  • Year 1: 24% scheduled learning and teaching
  • Year 2: 26% scheduled learning and teaching
  • Year 3: 19% scheduled learning and teaching

The exact balance between scheduled learning and teaching and guided independent study will be informed by the modules you take.

Your course will primarily be delivered in person. It may include delivery of some activities online, either in real time or recorded.

How you will be assessed

Types of assessment

  • Year 1: Coursework 80%; exams 20%
  • Year 2: Coursework 62.5%; exams 37.5%
  • Year 3: Coursework 59%; exams 41%

Please note: the above breakdowns are a guide calculated on core modules only. If your course includes optional modules, this breakdown may change to reflect the modules chosen.

Feedback summary

We aim to provide feedback on assessments within 20 working days.

Your timetable

Your individualised timetable is normally available to students within 48 hours of enrolment. Whilst we make every effort to ensure timetables are as student-friendly as possible, scheduled learning and teaching can take place on any day of the week between 9am and 6pm. For undergraduate students, Wednesday afternoons are normally reserved for sports and cultural activities, but there may be occasions when this is not possible. Timetables for part-time students will depend on the modules selected.

Class sizes

To give you an indication of class sizes, this course normally enrols 160 students and lecture sizes are normally 160 to 180.  However this can vary by module and academic year.

Who teaches this course?

This course is delivered by the School of Life Sciences, Pharmacy and Chemistry.

The School of Life Sciences, Pharmacy and Chemistry offers an outstanding and diverse portfolio of undergraduate and postgraduate programmes in biological and biomedical sciences, chemistry, forensic science, pharmacy, pharmacological and pharmaceutical sciences, and sport science and nutrition.

We've invested heavily in the development of new facilities including laboratories for teaching and research to provide students with access to ultra-modern equipment in a wide range of teaching facilities.

Postgraduate students may run or assist in lab sessions and may also contribute to the teaching of seminars under the supervision of the module leader.

Facilities

There is a wide range of facilities for practical work at our Penrhyn Road campus, where this course is based. You will have access to a modern environment with the latest equipment, including:

  • the £9.8 million Eadweard Muybridge building with state-of the art laboratories;
  • an exercise physiology and biomechanics lab;
  • modern applied biology and chemistry laboratories
  • specialist equipment, such as electron microscopes and spectrometers;
  • computing laboratories and a team of IT technicians to offer assistance; and
  • a newly refurbished state-of-the-art nutrition kitchen.

The Library offers:

  • subject libraries, plus a free inter-library loan scheme to other libraries in the Greater London area;
  • online database subscriptions; and
  • a growing selection of resource material.

Course fees and funding

2025/26 fees for this course

The tuition fee you pay depends on whether you are assessed as a 'Home' (UK), 'Islands' or 'International' student. In 2025/26 the fees for this course are:

 Fee category Amount
Home (UK students) £9,535*
Foundation Year: £9,535
International

Year 1 (2025/26): £18,500
Year 2 (2026/27): £19,200
Year 3 (2027/28): £19,900
Year 4 (2028/29): £20,700

For courses with Professional Placement, the fee for the placement year can be viewed on the undergraduate fees table. The placement fee published is for the relevant academic year stated in the table. This fee is subject to annual increases but will not increase by more than the fee caps as prescribed by the Office for Students or such other replacing body.

* For full-time programmes of a duration of more than one academic year, the published fee is an annual fee, payable each year, for the duration of the programme. Your annual tuition fees cover your first attempt at all of the modules necessary to complete that academic year. A re-study of any modules will incur additional charges calculated by the number of credits. Home tuition fees may be subject to annual increases but will not increase by more than the fee caps as prescribed by the Office for Students or such other replacing body. Full-time taught International fees are subject to an annual increase and are published in advance for the full duration of the programme.

Eligible UK students can apply to the Government for a tuition loan, which is paid direct to the University. This has a low interest-rate which is charged from the time the first part of the loan is paid to the University until you have repaid it.

2024/25 fees for this course

The tuition fee you pay depends on whether you are assessed as a 'Home' (UK), 'Islands' or 'International' student. In 2024/25 the fees for this course are:

 Fee category Amount
Home (UK students) £9,250*
Foundation Year: £9,250
International

Year 1 (2024/25): £17,800
Year 2 (2025/26): £18,500
Year 3 (2026/27): £19,200
Year 4 (2027/28): £20,100

For courses with Professional Placement, the fee for the placement year can be viewed on the undergraduate fees table. The placement fee published is for the relevant academic year stated in the table. This fee is subject to annual increases but will not increase by more than the fee caps as prescribed by the Office for Students or such other replacing body.

* For full-time programmes of a duration of more than one academic year, the published fee is an annual fee, payable each year, for the duration of the programme. Your annual tuition fees cover your first attempt at all of the modules necessary to complete that academic year. A re-study of any modules will incur additional charges calculated by the number of credits. Home tuition fees may be subject to annual increases but will not increase by more than the fee caps as prescribed by the Office for Students or such other replacing body. Full-time taught International fees are subject to an annual increase and are published in advance for the full duration of the programme.

Eligible UK students can apply to the Government for a tuition loan, which is paid direct to the University. This has a low interest-rate which is charged from the time the first part of the loan is paid to the University until you have repaid it.

Note for EU students: UK withdrawal from the European Union

The Government has announced that new students from the European Union and Swiss Nationals starting their course after August 2021 will no longer be eligible for a student loan in England for Undergraduate or Postgraduate studies from the 2021/22 academic year. This decision only applies to new EU students starting after 2021/22. If you are an existing/continuing EU student, you will continue to be funded until you graduate or withdraw from your course.

Need to know more?

Our undergraduate fees and funding section provides information and advice on money matters.

Additional costs

Depending on the programme of study, there may be extra costs that are not covered by tuition fees which students will need to consider when planning their studies. Tuition fees cover the cost of your teaching, assessment and operating University facilities such as the library, access to shared IT equipment and other support services. Accommodation and living costs are not included in our fees. 

Where a course has additional expenses, we make every effort to highlight them. These may include optional field trips, materials (e.g. art, design, engineering), security checks such as DBS, uniforms, specialist clothing or professional memberships.

Textbooks

Our libraries are a valuable resource with an extensive collection of books and journals as well as first-class facilities and IT equipment. You may prefer to buy your own copy of key textbooks; this can cost between £50 and £250 per year.

Computer equipment

There are open-access networked computers available across the University, plus laptops available to loan. You may find it useful to have your own PC, laptop or tablet which you can use around campus and in halls of residence. Free WiFi is available on each campus. You may wish to purchase your own computer, which can cost between £100 and £3,000 depending on your course requirements.

Photocopying and printing

In the majority of cases, written coursework can be submitted online. There may be instances when you will be required to submit work in a printed format. Printing, binding and photocopying costs are not included in your tuition fees, this may cost up to £100 per year.

Travel

Travel costs are not included in your tuition fees but we do have a free intersite bus service which links the campuses, Surbiton train station, Kingston upon Thames train station, Norbiton train station and halls of residence.

Placements

If the placement year option is chosen, during this year travel costs will vary according to the location of the placement, and could be from £0 to £2,000.

Field trips

All field trips that are compulsory to attend to complete your course are paid for by the University. There may be small fees incurred for optional field trips such as travel costs and refreshments.

Personal Protective Equipment (PPE)

Kingston University will supply you with a lab coat and safety goggles at the start of the year.

What our students say

I am from Afghanistan, but came to study in the UK because of the high standard of education here. I chose this course because I am very interested in medicine and it has very good lecturers.

I have really enjoyed the medically-related modules. I like the practicals and you get lots of time for your own study. The lecturers are very good. They are positive, friendly and easy to get hold of.

Compared to my college, everything is very different. Teaching-wise, you have more opportunity to learn and the chance to improve your knowledge of specialist areas.

I've found it very easy to settle in at Kingston. I feel comfortable and more confident because of the knowledge I'm gaining at University. I am working in a pharmacy and the course makes it easier for me to connect with customers. I have a wider range of knowledge, which helps me to explain things to them.

The course has enabled me to apply for a career in medicine. After I graduate, I hope to go to medical college for another five years' training. I am looking forward to being accepted for this, and then becoming a doctor.

Shogofa Lalzad – Biomedical Science BSc(Hons)

It was challenging because I was learning new techniques and using equipment I hadn't used before, but also very rewarding when I finally ironed out the [DNA] code.

Jumping genes are quite well known and present in all life forms, but as yet not much work has been done on their presence with large amounts of DNA. The information I have uncovered will help scientists to keep chipping away at a puzzle that has been fascinating experts for years.

Alastair gained lots of new skills during his placement, according to Kew's Head of Genetics, Dr Mike Fay: "Alastair's breakthrough shows students on work research placements can achieve marvellous things.

"Working at Kew is a great way to kick-start their careers and gives students the opportunity to investigate a whole range of research interests that affect plant life around the globe.

"Sometimes, like Alastair, they are even lucky enough to discover something that will have a lasting impact on the wider research we do."

Alastair Muir – Biomedical Science BSc(Hons) 12 month work placement at Kew Gardens

After you graduate

Careers and progression

This degree provides excellent preparation for careers in science, health and education, and postgraduate studies such as medical and research degrees.

Examples of recent graduate destinations

Types of jobs

  • Medical laboratory assistant
  • Retinal screener
  • Hospital administrator
  • Product analyst
  • Phlebotomist
  • Senior healthcare technical officer
  • Teacher
  • Researcher
  • Lecturer

Employers

  • CL Medical
  • Oxbridge Centre
  • St George's Hospital
  • Ashford and St Peter's Hospitals NHS Foundation Trust
  • Moorfields Eye Hospital
  • NHS
  • Royal Marsden Hospital
  • Cancer Research UK

Employability preparation at Kingston University

In addition to building expertise in your own discipline, our courses will also help you to develop key transferable skills that you'll need for professional life or further study once you graduate. 

As well as a range of careers and employability activities at Kingston, we also offer you the chance to apply and develop your skills in live contexts as an integral part of your course. Opportunities include:

  • placements
  • working or studying abroad
  • volunteering
  • peer mentoring roles
  • internship opportunities within and outside the University.

In your final year, you'll get the opportunity to complete a major 'capstone' project where you can apply the knowledge and skills you have acquired to a range of real issues in different contexts. This is a great way to learn and is a valuable bridge to employment or further research at masters level.

Courses available after you graduate

If you decide that you would like to go on to postgraduate study after your undergraduate course, we offer our alumni a 10% discount on postgraduate course tuition fees. Here are some courses that might interest you:

What our graduates say

Having studied at Kingston already, I was aware of the great research facilities and industrial contacts that it held. Kingston is a super place to study and I have always been impressed with its commitment to students, student learning, and providing external research placements. There were also definite benefits of doing my MSc at the same university as my undergraduate degree including familiar faces, being local to home and knowing the surroundings.

For my MSc Research Project I was fortunate enough to be one of two students to complete their project at the Institute of Cancer Research - an amazing, but probably the most challenging 12 weeks ever.
I am now training to become a teacher through a Graduate Teacher Programme with the Thamesmead Teacher Training Partnership. I definitely feel my masters degree helped me secure this position, and will also definitely aid me in providing a foundation subject knowledge when teaching post 16 in the near future.

My MSc has enhanced my career prospects, showing that I can think and work at a higher level. Despite this, you can't expect to walk into a job on the basis of a masters. Experience and understanding of the job you are applying for is key. The final highlight for me was being asked to deliver the student 'vote of thanks' speech at graduation. A remarkable experience.

Daniel West – Biomedical Science BSc(Hons) and Cancer Biology MSc

Biomedical Science gave me a good understanding of both haematology and oncology, which helped me secure both my first two roles, and provided me with the foundation for my PhD.

In October 2003, I went on to join the Institute of Cancer Research. I now investigate novel compounds used to treat cancer. This means looking at the properties of a cancer and then creating a brand-new drug to treat it. I enjoy discovering new things and the interaction with people that my work provides.

I have found the most useful element of the Biomedical Science degree is that it is so wide-ranging. It covers everything from haematology to pharmacology and this, combined with the research project, which you can work on outside the University, enables you to keep your career options open. I feel it is a fantastic course.

When you are deciding what to study it is useful to have a rough idea of what you would like to do career-wise.  But you don't need to be too specific - by doing a wide ranging course such as this one, a lot of doors are still left open to you.

Wai Liu – Biomedical Science BSc(Hons)

Work placement year

How you can work in industry during your course

Placements:

  • provide work experience that is relevant to your course and future career
  • improve your chances of graduating with a higher-grade degree
  • enhance your CV
  • lead to a graduate job
  • enable you to earn a year's salary whilst studying (the vast majority of placements are paid)
  • help you to select your final-year project.

There is a lot of support available for students looking to secure a placement (e.g. a jobs board with placement vacancies, help with writing CVs and mock interviews). Getting a placement and passing the placement year are ultimately the student's responsibility.

This course provides the opportunity to do an industrial placement. Here are some examples of employers:

  • GSK
  • NHS Laboratories
  • Pfizer
  • UK Health and Security Agency

Key information set

The scrolling banner(s) below display some key factual data about this course (including different course combinations or delivery modes of this course where relevant).

Course changes and regulations

The information on this page reflects the currently intended course structure and module details. To improve your student experience and the quality of your degree, we may review and change the material information of this course. Course changes explained.

Programme Specifications for the course are published ahead of each academic year.

Regulations governing this course can be found on our website.