Biological Sciences BSc (Hons)

Teaching Excellence Framework (TEF) Gold award

Teaching Excellence Framework (TEF) Gold award

Our commitment to high quality teaching has been recognised with a TEF Gold rating. The University has received an overall rating of Gold, as well as securing a Gold award in the framework's two new student experience and student outcomes categories.

Why choose this course?

Biological sciences form the basis of many new areas of science and technology. They are the foundation of our understanding of a diverse range of subjects – from evolution, genetics and diversity to medicine, drug and human development.

On this course, you can choose to study medical biology or genetics and molecular biology.

Practical work includes a laboratory and/or field-based project, a data project or a systematic review. Project work might be based in a laboratory or organisation outside the University. You'll gain the knowledge, techniques and skills you need to boost your employability, ready for when you graduate.

We have updated our modules to enhance student-centred teaching and align course content with industry needs, helping you become a future-proof graduate.

Attendance UCAS code/apply Year of entry
3 years full time C111 2025
4 years full time with professional placement C100 2025
4 years full time including foundation year C118 2025

Please note: Teaching on this course may take place on more than one KU campus.

Main Location Penrhyn Road

Reasons to choose Kingston University

  • This degree is accredited by the Royal Society of Biology (RSB). Once you graduate, you'll receive one year's free membership, helping you to network and keep you up to date with developments in life sciences.
  • You can choose to take a four-year professional placement degree, with a year's overseas study or an industrial placement to give you a career head start.
  • 100% of students thought staff were good at explaining things (NSS 2023).

What you will study

Year 1

Year 2

Professional placement year

Year 3

Year 1 is common to both streams of this biological sciences degree – medical biology and molecular biology – as well as a number of other degrees. It has been designed to give you a thorough understanding of the core subjects within life sciences and provides a measure of flexibility between courses.

Core modules

Human Physiology and Anatomy

30 credits

This module provides you with a dynamic exploration of how human physiology and anatomy work together to underpin health, movement, and physical performance. You will investigate how key physiological systems like the cardiovascular, muscular, and nervous systems work together, while exploring the principles of biomechanics to understand how the body moves and adapts to homeostatic challenges.

Through hands-on labs and workshops, you will develop practical skills in data collection, experimental design, and analysis, learning how to measure and evaluate human performance. By the end of this module, you will have a solid grasp of how human physiology and anatomy are studied and how they relate to broader issues like sustainability and human health.

Genes to Tissues

30 credits

This module introduces basic cell biology of prokaryotes and eukaryotes, genetics, germ layers, and tissue types in the human body, as well as various microorganisms.

You will experience practical sessions in a state-of-the-art laboratory, on microscopy, histology, cytogenetics and microbiology, enabling you to develop practical skills in the correct use of microscopes, examining and studying chromosomes, prokaryotic and eukaryotic cells, microbes and tissues, interpreting, and recording biological data, and build upon your knowledge gained from lectures.

This module provides a foundation for advanced modules in cell biology, anatomy, physiology, genetics, and microbiology.

Introduction to Biochemistry

30 credits

This module provides an understanding of how basic chemical elements are bonded to form complex biomolecules in living systems. In this module, we will explore the role and structure of proteins, carbohydrates and lipids and delve into defining their properties and functions. The module will also introduce the vital role of energy transformations in living organisms.

Core material is delivered through lectures, online resources and activities, and problem-solving workshops supported by laboratory practicals and subsequent data analysis.

On completion of the module, you will have a comprehensive grounding in the molecular basis of life from the atomic scale up to cells. This module will help you develop the skills necessary for enhancing your learning through effective note-taking and critical thinking, which will continue to help you throughout your degree.

Scientific and Laboratory Skills

30 credits

This module provides a firm foundation in the general scientific and laboratory skills students require to successfully complete their programmes of study.

A significant component of the module consists of the development and demonstration of core technical/practical skills through familiarity with the laboratory environment through hands-on learning.

This module will also introduce you to Future Skills through engagement with the Navigate programme introducing the key graduate attributes required in developing your professional development portfolio in the biosciences. The Future Skills concepts and activities will support you in developing and evidencing your practice, scientific analytical/problem-solving, teamworking, digital competency, practical and numeracy skills.

You will be supported by themed tutor meetings and peer support tutee teams enabling you to work on tasks to develop your graduate attributes.

In Year 2, you will have core modules and specialist modules within your chosen specialism (Medical Biology or Molecular Biology). You will develop your knowledge, techniques and practical skills, as well as additional transferrable and employability-related Future Skills.

Core modules

Evolutionary Biology, Research Methods and Skills

30 credits

This module is divided into two distinct parts. The first part explores biodiversity on our planet and investigates the genetic processes that create this variation. Through real-world examples and computer-based workshops, students will examine both historical and ongoing evolution.

The second part broadens the scope to encompass the wider aspects of the biological sciences and beyond. It focuses on developing your Future Skills by engaging you with Explore, enhancing your research, problem-solving, and critical thinking abilities, and preparing you for their final year capstone project. You will be supported by tutor meetings, which help you work on tasks to develop, articulate, and reflect on your progress and graduate attributes. The Future Skills learning outcomes are integrated into this module.

Proteins and Metabolism

30 credits

This module provides you with knowledge of the structure and methods of analysis of proteins, with particular emphasis on enzymes. This is followed by the study of the major catabolic and anabolic pathways and investigates how organisms obtain and use energy. These processes, and their regulation in health and disease, are considered at the molecular level, which involves many proteins including enzymes.

You will investigate how organisms obtain and utilise energy from metabolic pathways. You will gain a detailed understanding of the structure of proteins, including enzymes, and have a comprehensive knowledge of practical and graphical methods involved in the investigation of enzyme activity.

You will also develop key practical skills involved in protein biochemistry and metabolism.

Medical Biology route

Infection and Immunity

30 credits

This module delves into the fascinating world of microorganisms, that play a big role in health and disease. We'll explore how our immune system responds to these microscopic agents. Through interactive lectures and workshops, we'll examine various microbiological processes. You will learn about controlling these organisms in laboratory settings and within patients. You will also become familiar with the immune system's different cells and organs, understanding how they work together to protect the body from infections upon first exposure and during subsequent encounters. Lastly, we'll introduce some of the molecular processes and signalling events crucial for communication between human immune cells.

Pathobiology

30 credits

This module discusses the fascinating world of cellular mechanisms of disease and explore how cellular pathology integrates with clinical pathology and other disciplines. Particular emphasis is given to hand-on laboratory techniques to understand cellular injury and its role in routine diagnosis. By the end of the module, you will understand the effects of cell injury, inflammation, cancer, infertility, and genetic diseases on cells. You will learn how cellular pathology and diagnostic techniques contribute to disease identification and the development of research-informed treatments, preparing you for bright and impactful careers in science.

Molecular Biology route

Medical Genetics

30 credits

You will be introduced to the molecular and cellular basis of human diseases. This module covers basic concepts of inheritance patterns, population genetics and genetic disorders including single-gene disorders, chromosomal imbalances, epigenetics, and complex disorders. You will learn about molecular genetics techniques, genetic testing and counselling, pharmacogenomics, and personalised medicine.

The module covers basic bioinformatic tools and computational techniques used in analysing large volumes of biological data that help in the identification of genetic variations and their influence on disease processes. You will also be introduced to cutting-edge advancements in the field including gene therapy and editing, single-cell sequencing, and omics technologies. You will gain insight into how these technologies are shaping the future of medical genetics research and clinical practice.

Molecular Biology of the Cell

30 credits

This module builds on topics covered in your first year and explores advanced concepts in cell and molecular biology. The module provides a molecular insight into the structure and function of cells and takes an integrated approach to understand how cells respond to changes in their environment – from receptor interactions and intracellular signalling pathways through to the regulation of gene expression and changes in cellular processes.

You will discover various mechanisms of intracellular signalling in different organisms. You will gain a detailed knowledge of the processes involved in the regulation of gene expression. You will also learn about practical methods relevant to cell and molecular biology, for example fluorescence microscopy, RT-PCR.

All students are encouraged to identify opportunities for work experience during the course, which may be through an optional professional placement year, taken between Years 2 and 3.

In Year 3, you will examine more advanced and applied aspects within your subject area. You will also undertake an independent project - this provides an opportunity to research a topic of your choice within your specialism as either a laboratory-based project or a library-based dissertation.

Core modules

Current Concepts in Biomolecular Science

30 credits

You will gain insights into the scientific basis of recent technological advances in biomolecular science through selected examples of contemporary scientific research and their impact on society. This module will build on your previous knowledge and skills to demonstrate the successful translation of research to public benefit.

Employability and enterprise are embedded to develop your scientific and professional skills, particularly those of developing inclusive behaviours, communication, reflection, teamworking and problem-solving. The Future Skills Apply learning outcomes are delivered in this module.

Project (Bioscience)

30 credits

The project module forms a very important part of the degree programme and probably constitutes the largest piece of independent work that you are likely to undertake during undergraduate studies. There are several types of projects that may be offered to you: a laboratory or field-based project, data projects involving acquisition of data and information from surveys, computer simulations or bioinformatics, or a systematic review of research literature that includes the collection, analysis, and original presentation of reported research data.

Your project will include a review and critical evaluation of qualitative and quantitative information and data to address a hypothesis or research question, and the production of a written report.

Medical Biology route

Clinical Biochemistry and Blood Sciences

30 credits

In this module, we explore how laboratory investigations contribute to diagnosing, treating, and preventing diseases such as renal disease, diabetes, anaemia, and haematological malignancies. Additionally, we delve into the role of transfusion laboratories in treating specific disorders.

You will learn about the processes involved in the investigation of blood groups and the techniques used in blood transfusion. You will discover the diagnostically useful changes which occur in normal body chemistry in selected examples of disease/trauma.

Throughout the course, real-life case studies illustrate best practices in clinical chemistry and haematology. Expert practitioners also deliver keynote lectures, enriching your learning experience. Plus, we emphasise equipping you with the knowledge and practical skills sought after by employers.

Pharmacotherapy of Infection and Cancer

30 credits

This module provides you with an opportunity to learn about drug therapies used in the treatment of both infectious diseases and cancer. Treatments for infectious diseases will cover drugs that have actions on bacteria, viruses, fungi, and parasites, while the cancer therapies will include a range of different neoplastic diseases, including drug treatments for both solid and blood cancers. Your lectures will focus on the mode of action, side effects and mechanisms of resistance of antimicrobials and anti-cancer drugs, as well as the development of new drugs.

Molecular Biology route

Bioinformatics: Decoding Life's Data

30 credits

Enormous amounts of data are generated in Life Sciences research every day with a wide range of applications such as providing insight into genetic diseases, modelling how a drug interacts with its target protein, exploring the diversity of microbes in our digestive systems, establishing changes of gene expression in cancer/disease, and tracking the spread of cancerous cells. Bioinformatics forms an interface between biological sciences and information technology. In this module, you will develop the skills necessary to write your own computer programs (using R and/or Python) and use online tools to analyse and interpret real-world biological datasets. Alongside this, you will explore genomic variability, molecular evolution and phylogenetics in the context of bioinformatics. The module introduces an area of increasing importance in many areas of bioscience research, including molecular diagnostics and drug development.

Core factual material is provided predominantly via computing workshops, supported by demonstrations of online bioinformatic resources, guided reading, and lectures. Additional resources will be placed on Canvas. You will undertake an individual bioinformatics mini-project investigating an authentic research question that integrates the learning across the module.

Drugs, Brain and Behaviour

30 credits

This research-driven module will provide a thorough background in the fields of neurophysiology and neuropharmacology and introduce a range of current topics in neuroscience, selected from such areas as cellular and molecular neurobiology, sensory and motor systems, cognitive neuroscience and degenerative neuropathologies. You will experience current research techniques and learn to critically evaluate and discuss different ways of studying the brain.

Foundation year

If you would like to study one of our science degrees at Kingston University but are not yet ready to join the first year of a BSc (Hons) course, you can include an extra foundation year within your chosen degree. Please see the science foundation year course page for details of modules.

Future Skills

Knowledge to give you the edge

Embedded within every course curriculum and throughout the whole Kingston experience, Future Skills will play a role in shaping you to become a future-proof graduate, providing you with the skills most valued by employers such as problem-solving, digital competency, and adaptability.

As you progress through your degree, you'll learn to navigate, explore and apply these graduate skills, learning to demonstrate and articulate to employers how future skills give you the edge.

At Kingston University, we're not just keeping up with change, we're creating it.

A female engineering student, in the engineering lab.

Entry requirements

Typical offer 2025

  • 112–128 UCAS points from a minimum of two A-levels or equivalent Level 3 qualifications; Degree with foundation year 64.
  • Any A-level Biology or Biological Science subject at grade C or above.
  • Candidates are normally required to hold GCSE Mathematics at grade C/4 or above.

Alternatively, BTEC Extended Diploma in appropriate Science subject with grades DMM - DDM.

Typical offer 2024

  • 112–128 UCAS points from a minimum of two A-levels or equivalent Level 3 qualifications; Degree with foundation year 64.
  • A-levels to include Biology/Applied Biology at grade C or above; two science A-levels are desirable which include Mathematics, Physics, Psychology, Geography, Sociology or Statistics. However, those completing A-level Biology and A-levels in non-science subjects will still be considered. We also count Bioscience Extended Project towards your UCAS points total. General Studies not accepted.

Alternatively, BTEC Extended Diploma in appropriate Science subject with grades DMM - DDM.

Additional requirements

Entry on to this course does not require an interview, entrance test, audition or portfolio.

Alternative routes

We will consider a range of alternative Level 3 qualifications such as an Access Course in a relevant science subject, e.g. Biology, Science, Medicine and Medical and Biosciences, which has been passed with 112 UCAS points with a minimum of 21 Level 3 credits in Biology and/or Chemistry at a Merit grade.

Applications from those that have taken a Science foundation year will also be considered.

International

We welcome applications from International Applicants. View our standard entry requirements from your country.

All non-UK applicants must meet our English language requirements. For this course it is Academic IELTS of 6.0, with no element below 5.5.

Country-specific information

You will find more information on country specific entry requirements in the International section of our website.

Find your country:

Typical offer and UCAS points explained

Like most universities, we use the UCAS Tariff point system for our course entry requirements.

Find out more about UCAS Tariff points and see how A-level, AS level, BTEC Diploma and T-level qualifications translate to the points system.

Teaching and assessment

Scheduled learning and teaching on this course includes timetabled activities including lectures, seminars and small group tutorials.
It may also include placements, project work, practical sessions, workshops, conferences and field trips.

Guided independent study (self-managed time)

Outside the scheduled learning and teaching hours, you will learn independently through self-study which will involve reading articles and books, working on projects, undertaking research, preparing for and completing your work for assessments. Some independent study work may need to be completed on-campus, as you may need to access campus-based facilities such as studios and labs.

Academic support

Our academic support team here at Kingston University provides help in a range of areas.

Dedicated personal tutor

When you arrive, we'll introduce you to your personal tutor. This is the member of academic staff who will provide academic guidance, be a support throughout your time at Kingston and show you how to make the best use of all the help and resources that we offer at Kingston University.

Your workload

A course is made up of modules, and each module is worth a number of credits. You must pass a given number of credits in order to achieve the award you registered on, for example 360 credits for a typical undergraduate course or 180 credits for a typical postgraduate course. The number of credits you need for your award is detailed in the programme specification which you can access from the link at the bottom of this page.

One credit equates to 10 hours of study. Therefore 120 credits across a year (typical for an undergraduate course) would equate to 1,200 notional hours. These hours are split into scheduled and guided. On this course, the percentage of that time that will be scheduled learning and teaching activities is shown below for each year of study. The remainder is made up of guided independent study.

  • Year 1: 24% scheduled learning and teaching
  • Year 2: 26% scheduled learning and teaching
  • Year 3: 20% scheduled learning and teaching

The exact balance between scheduled learning and teaching and guided independent study will be informed by the modules you take.

Your course will primarily be delivered in person. It may include delivery of some activities online, either in real time or recorded.

How you will be assessed

Types of assessment

Medical biology route:

  • Year 1: Coursework 80%; exams 20%
  • Year 2: Coursework 75%; exams 25%
  • Year 3: Coursework 74%; exams 26%

Molecular biology route:

  • Year 1: Coursework 80%; exams 20%
  • Year 2: Coursework 77.5%; exams 22.5%
  • Year 3: Coursework 55%; exams 45%

Feedback summary

We aim to provide feedback on assessments within 20 working days.

Your timetable

Your individualised timetable is normally available to students within 48 hours of enrolment. Whilst we make every effort to ensure timetables are as student-friendly as possible, scheduled learning and teaching can take place on any day of the week between 9am and 6pm. For undergraduate students, Wednesday afternoons are normally reserved for sports and cultural activities, but there may be occasions when this is not possible. Timetables for part-time students will depend on the modules selected.

Class sizes

To give you an indication of class sizes, this course normally enrols 30 students and lecture sizes are normally 30­-325­.  However this can vary by module and academic year.

Who teaches this course?

This course is delivered by the School of Life Sciences, Pharmacy and Chemistry.

The School of Life Sciences, Pharmacy and Chemistry offers an outstanding and diverse portfolio of undergraduate and postgraduate programmes in biological and biomedical sciences, chemistry, forensic science, pharmacy, pharmacological and pharmaceutical sciences, and sport science and nutrition.

We've invested heavily in the development of new facilities including laboratories for teaching and research to provide students with access to ultra-modern equipment in a wide range of teaching facilities.

Postgraduate students may run or assist in lab sessions and may also contribute to the teaching of seminars under the supervision of the module leader.

Facilities

There is a wide range of facilities for practical work at our Penrhyn Road campus, where this course is based. You will have access to a modern environment with the latest equipment, including:

  • the £9.8 million Eadweard Muybridge building with state-of the art laboratories;
  • an exercise physiology and biomechanics lab;
  • modern applied biology and chemistry laboratories
  • specialist equipment, such as electron microscopes and spectrometers;
  • computing laboratories and a team of IT technicians to offer assistance; and
  • a newly refurbished state-of-the-art nutrition kitchen.

The Library offers:

  • subject libraries, plus a free inter-library loan scheme to other libraries in the Greater London area;
  • online database subscriptions; and
  • a growing selection of resource material.

Accreditation

This course has been accredited by the Royal Society of Biology for 2019 entry. Kingston University graduates from this programme will receive one year's free membership of the Royal Society of Biology.

The Royal Society of Biology is the leading professional body for the biological sciences in the United Kingdom. The Society represents more than 16,000 biologists from all areas of the life sciences, as well as more than 100 organisations which make up the diverse landscape of biology in the UK and overseas. The Royal Society of Biology offers members unique opportunities to engage with the life sciences and share their passion for biology.

Whichever area of biology you wish to gain a career in, membership will help you:

  • stay up to date with what is happening across the life sciences;
  • gain additional recognition for your skills and experience;
  • develop your professional network; and
  • demonstrate your support for the future of biology.

Course fees and funding

2025/26 fees for this course

The tuition fee you pay depends on whether you are assessed as a 'Home' (UK), 'Islands' or 'International' student. In 2025/26 the fees for this course are:

 Fee category Amount
Home (UK students) £9,535*
Foundation Year: £9,535
International

Year 1 (2025/26): £18,500
Year 2 (2026/27): £19,200
Year 3 (2027/28): £19,900
Year 4 (2028/29): £20,700

For courses with Professional Placement, the fee for the placement year can be viewed on the undergraduate fees table. The placement fee published is for the relevant academic year stated in the table. This fee is subject to annual increases but will not increase by more than the fee caps as prescribed by the Office for Students or such other replacing body.

* For full-time programmes of a duration of more than one academic year, the published fee is an annual fee, payable each year, for the duration of the programme. Your annual tuition fees cover your first attempt at all of the modules necessary to complete that academic year. A re-study of any modules will incur additional charges calculated by the number of credits. Home tuition fees may be subject to annual increases but will not increase by more than the fee caps as prescribed by the Office for Students or such other replacing body. Full-time taught International fees are subject to an annual increase and are published in advance for the full duration of the programme.

Eligible UK students can apply to the Government for a tuition loan, which is paid direct to the University. This has a low interest-rate which is charged from the time the first part of the loan is paid to the University until you have repaid it.

2024/25 fees for this course

The tuition fee you pay depends on whether you are assessed as a 'Home' (UK), 'Islands' or 'International' student. In 2024/25 the fees for this course are:

 Fee category Amount
Home (UK students) £9,250*
Foundation Year: £9,250
International

Year 1 (2024/25): £17,800
Year 2 (2025/26): £18,500
Year 3 (2026/27): £19,200
Year 4 (2027/28): £20,100

For courses with Professional Placement, the fee for the placement year can be viewed on the undergraduate fees table. The placement fee published is for the relevant academic year stated in the table. This fee is subject to annual increases but will not increase by more than the fee caps as prescribed by the Office for Students or such other replacing body.

* For full-time programmes of a duration of more than one academic year, the published fee is an annual fee, payable each year, for the duration of the programme. Your annual tuition fees cover your first attempt at all of the modules necessary to complete that academic year. A re-study of any modules will incur additional charges calculated by the number of credits. Home tuition fees may be subject to annual increases but will not increase by more than the fee caps as prescribed by the Office for Students or such other replacing body. Full-time taught International fees are subject to an annual increase and are published in advance for the full duration of the programme.

Eligible UK students can apply to the Government for a tuition loan, which is paid direct to the University. This has a low interest-rate which is charged from the time the first part of the loan is paid to the University until you have repaid it.

Note for EU students: UK withdrawal from the European Union

The Government has announced that new students from the European Union and Swiss Nationals starting their course after August 2021 will no longer be eligible for a student loan in England for Undergraduate or Postgraduate studies from the 2021/22 academic year. This decision only applies to new EU students starting after 2021/22. If you are an existing/continuing EU student, you will continue to be funded until you graduate or withdraw from your course.

Need to know more?

Our undergraduate fees and funding section provides information and advice on money matters.

Additional costs

Depending on the programme of study, there may be extra costs that are not covered by tuition fees which students will need to consider when planning their studies. Tuition fees cover the cost of your teaching, assessment and operating University facilities such as the library, access to shared IT equipment and other support services. Accommodation and living costs are not included in our fees. 

Where a course has additional expenses, we make every effort to highlight them. These may include optional field trips, materials (e.g. art, design, engineering), security checks such as DBS, uniforms, specialist clothing or professional memberships.

Textbooks

Our libraries are a valuable resource with an extensive collection of books and journals as well as first-class facilities and IT equipment. You may prefer to buy your own copy of key textbooks; this can cost between £50 and £250 per year.

Computer equipment

There are open-access networked computers available across the University, plus laptops available to loan. You may find it useful to have your own PC, laptop or tablet which you can use around campus and in halls of residence. Free WiFi is available on each campus. You may wish to purchase your own computer, which can cost between £100 and £3,000 depending on your course requirements.

Photocopying and printing

In the majority of cases, written coursework can be submitted online. There may be instances when you will be required to submit work in a printed format. Printing, binding and photocopying costs are not included in your tuition fees, this may cost up to £100 per year.

Travel

Travel costs are not included in your tuition fees but we do have a free intersite bus service which links the campuses, Surbiton train station, Kingston upon Thames train station, Norbiton train station and halls of residence.

Placements

If the placement year option is chosen, during this year travel costs will vary according to the location of the placement, and could be from £0 to £2,000.

Field trips

All field trips that are compulsory to attend to complete your course are paid for by the University. There may be small fees incurred for optional field trips such as travel costs and refreshments.

Personal Protective Equipment (PPE)

Kingston University will supply you with a lab coat and safety goggles at the start of the year.

After you graduate

This degree can lead to careers in the pharmaceutical, medical, food, biotech and veterinary industries, as well as teaching and research.

Examples of graduate destinations

Types of jobs

  • Bio technician
  • Scientific officer
  • Account manager
  • Quality control technician
  • Research assistant

Employers

  • Institute of Cancer Research
  • Cancer Research UK
  • Isologen
  • Kingston Hospital NHS Trust
  • Wellcome Trust
  • Natural History Museum
  • Kew Gardens

Employability preparation at Kingston University

In addition to building expertise in your own discipline, our courses will also help you to develop key transferable skills that you'll need for professional life or further study once you graduate.

As well as a range of careers and employability activities at Kingston, we also offer you the chance to apply and develop your skills in live contexts as an integral part of your course. Opportunities include:

  • placements;
  • working or studying abroad;
  • volunteering;
  • peer mentoring roles; and
  • internship opportunities within and outside the University.

In your final year, you'll get the opportunity to complete a major 'capstone' project where you can apply the knowledge and skills you have acquired to a range of real issues in different contexts. This is a great way to learn and is a valuable bridge to employment or further research at masters level.

Courses available after you graduate

If you decide that you would like to go on to postgraduate study after your undergraduate course, we offer a 10% discount on our postgraduate course tuition fees to our alumni.

What our students say

My first year included a broad study of biological sciences that helped lay the foundation of biology for everyone, regardless of educational background. There were areas I was secure with and others I gave more attention to (chemistry is not my forte). However, alongside studies there was plenty of time to socialise and explore university culture. I would definitely recommend engaging with as much as possible and with as many people as possible. I became an active member of the drama society; I was content to find like-minded people at the weekly sessions.

Second year modules contained some difficult material and I wish I had asked more questions. I found lecturers actually enjoyed answering questions especially in relation to student assignments and I'd urge everyone to talk to them, email them, and even fax them in a timely manner if needed. I also started to read papers to get into the scientific atmosphere and delve deeper into neuroscience, a topic I was passionate about. I became treasurer and then president of the drama society I'd joined in the first year and although it may have taken a little too much of my time, it was a responsibility I took up with pleasure.

Choosing my third year modules let me follow my specialised interest of neuroscience (I loved the brain and behaviour module). I learned to start early with everything, especially the dissertation, reviewing my writing to ensure it was closer to material I'd like to read myself. I learned a valuable lesson in reprioritising my time and when I could do that I felt I had deserved time with my friends during my final year."

Rahul Batra, Biological Sciences BSc(Hons) (Human Biology)

I am from Germany and decided to work in England and study the language for a year before starting university in Germany. However, I really enjoyed being here so decided to stay.

I chose this joint honours combination because I have had a passion for biology since I was little. But these days, science is not just about research - it's also about applying business knowledge. The business modules enable me to focus my research on areas of demand.

I chose to study at Kingston because I really enjoyed its open day; everyone was very helpful and friendly. In addition, the University has one of the best ratings for teaching life science modules. I've since found that I really enjoy living in Kingston. It is a very nice place to study, especially since the river is only a few minutes' walk from the University.

Studying so many different subjects makes the course very exciting. It never gets boring. In general I like the style of teaching, especially since I am now in my final year and everyone seems very familiar. I really enjoy the laboratory work - even though I am not very practical and a couple of things have gone wrong! The business course is a challenge because I am more scientific so I need to work harder at these modules. However, I have always managed to get good grades.

For my placement year, I worked in the clinical dictionary department of a pharmaceutical company. I learnt how to code medical and drug terminology, and about different diseases, drugs and chemicals, which will definitely benefit me. It was a fantastic experience.

I am no longer scared of getting a job after university - instead I am now really looking forward to graduating. I think the placement has opened a lot of opportunities for me and I feel really motivated to finish my degree successfully."

Sandra Machlitt, Biology with Business BSc(Hons) professional placement course

What our graduates say

I initially embarked upon a pharmacy degree, but decided I preferred biology. I chose to transfer to Kingston as I was impressed with the facilities available. Before enrolling, I had a discussion with the course director who showed me around. His enthusiasm for both biology and Kingston University aided my decision. In addition, I knew other people who had attended the University and spoke very highly of it.

I thoroughly enjoyed every minute of my studies. The degree was hard work and I did dedicate a lot of my time to it, but it always felt worthwhile. As the course was modular, I was able to study the subjects that I found interesting. The final year project takes a lot of motivation as you are required to study and research a topic on your own. But, as well as learning very valuable skills and discovering how to research, I was extremely pleased with the result I achieved.

Other highlights of my time at Kingston include helping to organise the end of degree party, which was an immense amount of fun. Also, I was a Peer Assisted Learning Leader (helping first year students academically), which made me feel like I was contributing to the University.

Following Kingston, I completed a Management of Intellectual Property MSc*. I had aspirations of becoming a patent attorney. However, once I embarked on the course, I realised I preferred trademark law. I am now a part-qualified trade mark attorney working in central London.

Charlotte Duly – Graduated 2003

Kingston offered a non-restrictive biology degree, which lets you choose to study the topics you are most interested in, but also gives you guidance so you don't select incompatible subjects. The open day I attended at the University made me feel welcome, and the town and train station were really convenient for student life and for going into London for those all-important shopping sprees!

I really enjoyed the course. The lecturers were fantastic and I made some wonderful friends. The lab work built my confidence and allowed me to become familiar with a variety of techniques. I enjoyed the modules I had chosen and they gave me a basic background in the area I went on to study and now work in. Although you don't really notice it, you also pick up a lot of practical skills, such as time management, organisation, punctuality and presentation skills.

My most memorable time was the final year summer project. I worked at the hospital at St George's, University of London. It was great fun. I had a really good supervisor, made some really good friends and it gave me an idea of what it would be like to work in a lab full-time.

The degree enabled me to progress onto a masters in immunology of infectious diseases and this helped me step into my first 'real' job. I am currently a researcher at Imperial College London for the Department of Immunology. I work for an Immunology group that looks at the immune response within leishmania, a parasitic disease. I'm really enjoying being here - the working environment is brilliant and the work is so interesting.

Beak-San Choi – Graduated 2004

Work placement year

How you can work in industry during your course

Placements:

  • provide work experience that is relevant to your course and future career
  • improve your chances of graduating with a higher-grade degree
  • enhance your CV
  • lead to a graduate job
  • enable you to earn a year's salary whilst studying (the vast majority of placements are paid)
  • help you to select your final-year project.

"To be successful, tomorrow's leaders will need to be far more rounded individuals than ever before. They will collaborate in pursuit of shared goals. They will guide, challenge and support...They will have an appetite for change and a hunger for continuous improvement, and they will have an ethos of learning and development..." Jeremy Darroch, Former Chief Executive, Sky.

"Doing a placement year effectively gives you one foot in the door of a future job and to stand out from the crowd... as well as enhancing my CV... and future interviews. It's a great motivator to be successful in my studies as it only serves to open even more doors and gain more skills." Placement student at Jagex Games Studios Ltd.

There is a lot of support available for students looking to secure a placement (e.g. a jobs board with placement vacancies, help with writing CVs and mock interviews). Getting a placement and passing the placement year are ultimately the student's responsibility.

Examples of placements

Placements can be with large multinational companies, international companies, local companies and small start-ups; offering a diverse range of posts. Here are some examples of employers and roles:

Construction-based placement employersConstruction-based placement roles 
RG Group
Multiplex
Costain
Willmott Dixon
Fluor
Assistant site manager
Assistant trades package manager
Assistant logistics manager
Health and safety officer
Construction engineer
Science-based placement employers Science-based placement roles
Reckitt and Benckiser
GSK
Drug Control Centre
Minton Treharne and Davies Ltd
Various local and international hospitals
Bioanalytical sciences
Lab assistant
Pharmacy assistant
Sports coach
Engineering-based placement employers Engineering-based placement roles
Airbus
BAM Nuttall
Nissan
Bosch
Wozair
Analysis of aircraft structure
Construction resources specialist
Site engineer assistant
Computing and IS-based placement employersComputing and IS-based placement roles
Disney
Sony Interactive Entertainment Europe
IBM
McKinsey
Intel
Database coordinator
Software developer
Website developer
App developer

Key information set

The scrolling banner(s) below display some key factual data about this course (including different course combinations or delivery modes of this course where relevant).

Course changes and regulations

The information on this page reflects the currently intended course structure and module details. To improve your student experience and the quality of your degree, we may review and change the material information of this course. Course changes explained.

Programme Specifications for the course are published ahead of each academic year.

Regulations governing this course can be found on our website.

Related courses