Electrical and Electronic Engineering MEng/BEng (Hons)
Subject and course type
- Engineering: Mechanical and Electronic
- Undergraduate
With the Electrical and Electronic Engineering MEng/BEng (Hons) degree course from Kingston University you will dive into a wide range of applications. For example, artificial intelligence, communication systems, control systems, power electronics, embedded systems, signal processing, robotics, instrumentation, electric vehicles and renewable energy. As a result, our course will prepare you for an array of exciting career paths and the opportunities offered by the Fourth Industrial Revolution.
You are reading:
Learn the skills needed to design and develop a more sustainable future
Unpick the science behind electricity and electronics
On this course, you will be able to take full advantage of the wide range of facilities available for practical work at our Roehampton Vale campus.
Our applied approach to teaching is supported by our dedicated laboratories. These include state-of-the-art facilities for rapid prototyping and manufacturing, a fully equipped materials laboratory, and a modern electronics and robotics lab.
Other technology and industry-standard equipment you will have access to includes:
- electronics and robotics labs
- 3D design studio and workshop
- mechanical engineering workshop
- rolling roads
- automotive testing facilities
- a Lotus Exige
- cars and motorcycles built by engineering students
All of our lecturers are extremely passionate and care about our individual needs and help us to improve ourselves in learning. We are always directed to exactly where we need to be and are kept well informed of any opportunities for us to grow or improve where we are lacking. At Kingston University there is a sense of history and knowledge that helps to uplift students even though our course is still new.
Why choose this course
Embark on an exciting journey into the dynamic realm of Electrical and Electronic Engineering. This highly sought-after field addresses some of the most pressing challenges facing society today. As a student on this course, you will gain the skills and expertise needed to tackle these issues with ground-breaking solutions that positively influence society and pave the way for a brighter tomorrow.
Throughout this course, you will master the art of harnessing artificial intelligence and other cutting-edge technologies to design, develop and implement intelligent electrical and electronic systems.
Through hands-on, project-based learning, you will gain invaluable practical experience, while deepening your understanding of the latest industry trends and innovations. As a result, you will graduate with the knowledge and skills sought after by the fast-paced industrial, commercial and domestic sectors.
The course curriculum embraces and integrates the UN Sustainable Development Goals to actively contribute to a sustainable future for all. Meaning you will learn to incorporate them into your professional work and make a meaningful difference in your future career.
Taught by experienced academics from diverse backgrounds, you will engage with people from diverse cultural, social and professional backgrounds. Enabling you to foster a deeper appreciation for diversity and hone your ability to navigate varied perspectives and nurture an inclusive mindset.
Course content
Year 1
In Year 1, you will establish a strong foundation in mathematics, physics, circuits and programming, gaining an understanding of the fundamental principles of electrical and electronic engineering.
Modules
15 credits
In this module, we prioritise the development of professional and personal skills, recognising their crucial role in your overall growth. These skills are seamlessly integrated into our curriculum, providing you with authentic opportunities to apply them.
Additionally, we delve into employability skills within the Personal Tutorial System (PTS), encouraging you to explore how these skills can be honed both horizontally across your Level 4 modules and vertically as you advance towards graduation. This will be supported through active engagement in the KU Navigate Programme enabling students to understand and begin to develop a design thinking approach to Future Skills development. Through practical application and thoughtful reflection, you'll have the chance to develop a well-rounded skill set that aligns with the demands of the professional world.
15 credits
The aim of this module is to provide the basic mathematical skills for engineering students that are essential for effective understanding of engineering subjects. The topics introduced will serve as basic tools for studies in many engineering subjects. Students will be empowered to understand and be able to use the language and methods of mathematics in the description, analysis and design of engineering systems. The emphasis is on using mathematical tools to solve engineering problems.
15 credits
This module offers a comprehensive approach to the study of electrical circuits, combining both theoretical knowledge and practical application. In the laboratory sessions, you will work on simple circuits containing combinations of resistors, capacitors and inductors. The module also covers the topic of transformers, revisiting induction, and concludes with the theoretical aspects of generators and motors, along with machines.
Overall, this module provides a balanced blend of theory and hands-on practice, giving you a solid understanding of electrical circuits and their practical applications.
30 credits
Electronic circuit and system fundamentals play a vital role across many engineering disciplines. This module will provide you with a firm understanding of the principles of electronic circuits and systems including digital electronics. You will be introduced to the fundamental electronic components and their application in the design of electronic circuits and systems. You will also learn to analyse various types of electronic circuits and systems. This module encourages the use of simulation tools for the design and analysis of electronic circuits and systems to enhance analytical as well as employability skills.
30 credits
This module will introduce you to both the operation and functionality of microcontrollers and the techniques used to interface them to sensors and transducers, with the aim to monitor and control a closed loop system. Interface circuitry, operation of sensors and actuator control is covered in depth, along with the inclusion of devices to extend the number of analogue and digital port lines on a microcontroller.
The information gained on this module can be fed forward to other modules; it will also be invaluable in industry when undertaking a job after graduating that involves mechatronics and embedded system design.
Year 2
Building upon the fundamental principles of electrical and electronic engineering, in Year 2 you will delve deeper into areas such as electronics, signal processing and control systems, further expanding your understanding of electrical and electronic engineering concepts.
Modules
15 credits
This module will equip you with fundamental mathematical skills that are crucial for comprehending engineering subjects effectively. The topics covered in the module will serve as fundamental tools for studying various engineering subjects. You will be empowered to comprehend and use the language and techniques of mathematics in describing, analysing, and designing engineering systems. The primary focus is on using mathematical tools to resolve engineering problems, especially on mechanical systems, robotics, control systems, and signal processing.
15 credits
This is a core module for all Level 5 students on engineering programmes. Students will demonstrate a developing awareness of the skills required to operate as a professional in their subject area. This module will scaffold Future Skills from Level 4 Navigate to Level 6 Apply.
This module considers the principles and practices for the design and management of engineering projects. The nature of engineering project management is discussed in the context of constraints on quality, time, risk, and sustainability. The module broadens the student's knowledge of how organisations undertake and monitor projects.
The module is skills-rich, including the development of team-working, interpersonal and interdisciplinary skills, critical self-reflection, communication and presentation, time management, and the ability to organise, strategise and prioritise.
A key element of this module will be the participation in an inter-disciplinary design thinking project. Students will contextualise their subject-specific knowledge, skills and behaviours as an interdisciplinary team member charged with developing a solution to a designated sustainability challenge. The teamwork project enables students to demonstrate their ability to explore and contextualise their subject specific knowledge and helps prepare them for their individual project in Level 6.
15 credits
Due to the rapid pace in technological advancements, electronic systems now play a vital role across many engineering disciplines. In this module you will be introduced to the fundamental principles of electronic system design and the building blocks currently being used.
The module will build on the knowledge gained in Level 4 electronics teaching to provide insight into more complex devices and methods for the creation and testing of electronic circuits and digital systems.
Upon successful completion of this module the knowledge and skills gained will prove invaluable, given the numerous and various application requirements of electronic systems in all areas of the engineering industry.
30 credits
This module is designed to provide you with a comprehensive understanding of the fundamentals of control systems and how artificial intelligence (AI) can enhance the performance of a control system.
You will learn how to model and analyse the behaviour of dynamic control systems. You will apply control theory to solve feedback control problems and will learn the concepts of AI approaches used in control systems. MATLAB is used to reinforce the concepts learned in the module through software simulation.
This technical-content-rich module enhances analytical as well as employability skills across many engineering disciplines.
30 credits
This course introduces you to the overall process of computer-aided design of electronic equipment and systems. The electronic equipment development and life cycle will be examined together with Printed Circuit Board (PCB) fabrication and surface mount technologies. The module uses Altium Designer to provide schematic entry, schematic library component management, electrical rule check and netlist generation. In the circuit analysis and simulation, Board level design will be examined together with PCB design rules, computer aided board design, mechanical design, preparation of manufacturing documentation.
Year 3
In Year 3, you will explore advanced topics including digital signal processing, power systems, communication systems and advanced electronics, gaining a comprehensive understanding of these specialised areas and their applications. MEng students will continue to deepen their knowledge in areas such as power systems and circuit design.
Modules
15 credits
This module focuses on students' ability to apply and demonstrate their developing professional skills in their chosen field, while also fostering a broad understanding of the business environment in which professionals operate. It will enhance students' technical, management, and interpersonal competencies within a team setting, preparing them for employment and entrepreneurial endeavours.
As part of this module, students will actively engage in Kingston University's Bright Ideas competition, collaborating as a team to develop a business concept of their choice. This will involve interacting with external stakeholders beyond the university setting.
Furthermore, students will be encouraged to connect with professional and learning communities outside the University, reflecting on these interactions. This may involve participation in co-curricular events, such as subject-specific and career development sessions, networking opportunities facilitated by professional bodies, exploration of pathways to professional chartership or membership, leveraging interactions with professionals for their final-year research project, and recognizing the mutual benefits of these interactions.
Through these activities, students will gain practical experience, expand their professional networks, and cultivate a deeper understanding of their future career pathways.
15 credits
This module is designed to develop, refine and apply both the ideas introduced, and proficiency gained in previous level 4 and 5 modules that involved electronics, control and software. It enables students to identify and develop skills in the solution of problems relating to the creation of mechatronic systems and robotic automation. Students are introduced to the techniques and knowledge required to design and embed microcontrollers, linked to a range of sensors and actuators, into a system to sense, process, control and display real world events, similar to those encountered within an industrial engineering, or commercial environment. The module covers topics such as advanced programming, state-of-the-art sensors and actuators, data logging, microcontroller selection and use of commercial shields (expansion boards) as building blocks to extend system functionality using a modular approach to the design process.
15 credits
In this module, students will delve into the fascinating world of digital signals, gaining the knowledge and skills to represent, analyse, and manipulate them effectively. The module strikes a balance between theoretical foundations and hands-on practical work, employing MATLAB and programming as key tools for exploration.
The primary aim of this module is to equip students with the necessary understanding to analyse and manipulate digital signals, while also preparing them for real-world implementations using digital signal processors. Through engaging with theoretical concepts and practical exercises, students will develop a solid foundation in DSP principles.
15 credits
This module aims to provide the background necessary to investigate and analyse the steady state and dynamic behaviour of power system which enables the analysis, modelling and design of power systems. An introduction to modelling of a range of power systems will be undertaken using commercial software for power systems analysis tools. The function protection system, design criteria of protection systems, components of protection systems, zones of protection, protection schemes. It will also include the design of primary and backup protection, transmission line protection, busbar protection, transformer protection, generator protection, protection of industrial power systems and fuse selection.
30 credits
This module aims to provide students with an in-depth understanding of the fundamental principles of wireless communication and networks. In addition, it will equip the students with the knowledge of the application of deep learning techniques to improve performance of wireless communication networks. The module will cover fundamental concepts of wireless networks, communication, and how deep learning techniques can be applied to optimise wireless communication networks. Students will also explore current research and industry developments related to the deployment of deep learning in wireless networks and communication. This technical as well as research-informed module will enhance students' analytical and employability skills. Additionally, it provides students the opportunity to enhance their research, interpersonal and presentation skills.
30 credits
The individual project module forms a capstone experience for the courses within the School, allowing the students to research and study in detail a topic in their chosen field of study which is of personal interest. Professionally the project module allows the students, to show high levels of responsibility and organisational capability (through arranging meetings with supervisors, setting project goals and meeting appropriate deadlines) as well as demonstrating effective communication with others. Furthermore, the module encourages the students to recognise, question and deal with the ethical dilemmas that are likely to occur in research and professional practice.
Furthermore, this module provides the students with an opportunity to further enhance their independence and employability skills which industry is looking for in perspective graduates, especially those seeking professional recognition as a Chartered Engineer.
Year 4 - MEng only
The final year of the MEng course focuses on synthesising knowledge and skills acquired throughout the programme. Students will engage in project work, advanced design and undertake specialised modules in areas such as robotics, renewable energy and embedded systems, preparing them for professional practice or further research. A strong emphasis is on independent learning, as well as an industrially focused team-based project.
Modules
15 credits
This module focuses on using advanced management techniques, including simulation and business modelling, in an engineering company to maximise the utilisation of its finite resources in order to become more competitive. These techniques include discrete event simulation, business modelling, linear programming, and human resources optimisation, with the main aim to improve the company's overall operational efficiency, competitiveness and profit.
The intended module topics cover both local and global horizons of running a successful business by teaching companies they may benefit from using simulation techniques in streamlining their operations and resource deployment through a benchmarking process. Through extensive hands-on practical, you will learn how to use sophisticated simulation software to improve resources utilisation in different business scenarios.
Throughout the module, you will learn not only the theoretical techniques of management skills, but also to apply the knowledge you gain and evaluate the results through developing complex business simulation models, therefore enhancing your employability potentials.
15 credits
This module focuses on the intricate aspects of electrical power system operation, control, design, and economic analysis, including renewable energy integration. Through the use of numerical methods, students will analyse and simulate power systems, incorporating advanced power control strategies. Students will explore topics such as state estimation, contingency analysis, load-frequency control, and automatic generation control. Additionally, they will delve into power control for high voltage electrical systems, employing load flow analysis, stability modelling, and control techniques. By mastering these advanced concepts and techniques, students will be equipped with the skills and knowledge to contribute to the design, optimisation, and efficient operation of power systems, enabling them to make a meaningful impact in the energy industry.
15 credits
This module introduces design and layout of VLSI circuits and systems making use of appropriate computer-aided design (CAD) tools. The primary objective of this module is to equip students with a comprehensive understanding of CMOS cell operation and the ability to design basic analogue and digital functions commonly used in ICs, as well as mixed-signal systems. The module places special emphasis on the importance of designing both analogue and digital functions. Students will be introduced to various CAD tools commonly used in industry for designing and simulating CMOS circuits, such as Cadence Virtuoso, Spectre, Synopsys Design Compiler. Students will have the opportunity to use these tools in practical design projects to gain hands-on experience in designing and simulating CMOS circuits using industry-standard tools.
15 credits
In this module, analysis of power system dynamics will be undertaken and encompass the behaviour of power systems under conditions such as sudden changes in load or generation, or during faults. It will also explore the design and operation of the controls available to maintain power system stability. The module aims to achieve competency in using analytical methods for understanding the design and operational behaviour of electrical power systems under steady-state and transient conditions.
30 credits
This module offers a comprehensive exploration of concepts and methods in autonomous systems and their applications in smart mechatronic systems. Students will gain valuable insights into real-world applications related to autonomous systems, providing a bridge between theory and industry. One key aspect of the module is the provision of mathematical tools for analysing the dynamic behaviour of mobile autonomous systems, such as unmanned aerial vehicles (UAVs). Through a project-based approach, students will engage in hands-on, practical learning experiences including becoming proficient in programming which is essential for successfully navigating the module and bringing autonomous systems to life. With a focus on industry relevance and practical applications, this module paves the way for students to become adept at shaping the future of autonomous systems.
Extended degree with foundation year
If you would like to study one of our engineering degrees at Kingston University but are not yet ready for Year 1 of an undergraduate course, a foundation year is ideal.

Future skills and careers opportunities
Graduates from this course usually go on to work in electrical and electronic engineering, across a range of industries, including:
- Aerospace
- Automotive
- Construction
- Defence
- Electronics
- IT
- Manufacturing
- Marine
Embedded within the Electrical and Electronic Engineering MEng/BEng (Hons) course and throughout the whole Kingston experience is our Future Skills programme. The Future Skills programme was developed to respond to the ever-evolving demands from modern day employment.
It will help you obtain the skills most valued by employers, such as problem-solving, digital competency, and adaptability, and learn how to apply these skills in different scenarios. You’ll also learn how to articulate to employers how being able to do so gives you the edge.
At Kingston University, we're not just keeping up with change, we're creating it
For more information on how Kingston prepares you for the future job market, visit our Future Skills page.

Teaching and assessment
Scheduled learning and teaching on this course includes timetabled activities including lectures, seminars and small group tutorials. It may also include placements, project work, workshops, workshops in computer labs, and laboratory workshops.
Outside the scheduled learning and teaching hours, you will learn independently through self-study which will involve reading articles and books, working on projects, undertaking research, preparing for and completing your work for assessments. Some independent study work may need to be completed on-campus, as you may need to access campus-based facilities such as studios and labs.
Our academic support team here at Kingston University provides help in a range of areas.
When you arrive, we'll introduce you to your personal tutor. This is the member of academic staff who will provide academic guidance, be a support throughout your time at Kingston and show you how to make the best use of all the help and resources that we offer at Kingston University.
A course is made up of modules, and each module is worth a number of credits. You must pass a given number of credits in order to achieve the award you registered on, for example 360 credits for a typical undergraduate course or 180 credits for a typical postgraduate course. The number of credits you need for your award is detailed in the programme specification which you can access from the link at the bottom of this page.
One credit equates to 10 hours of study. Therefore 120 credits across a year (typical for an undergraduate course) would equate to 1,200 notional hours. These hours are split into scheduled and guided. On this course, the percentage of that time that will be scheduled learning and teaching activities is shown below for each year of study. The remainder is made up of guided independent study.
- Year 1: 28% scheduled learning and teaching
- Year 2: 25% scheduled learning and teaching
- Year 3: 20% scheduled learning and teaching
- Year 4: 21% scheduled learning and teaching
The exact balance between scheduled learning and teaching and guided independent study will be informed by the modules you take.
Your course will primarily be delivered in person. It may include delivery of some activities online, either in real time or recorded.
We aim to provide feedback on assessments within 20 working days.
Fees and funding
Fee category | Fee |
---|---|
Home (UK students) | ÂŁ9,535* |
International | |
Year 1 (2025/26): | ÂŁ18,500 |
Year 2 (2026/27): | ÂŁ19,200 |
Year 3 (2027/28): | ÂŁ19,900 |
Year 4 (2028/29): | ÂŁ20,700 |
The tuition fee you pay depends on whether you are assessed as a 'Home' (UK), 'Islands' or 'International' student. In 2025/26 the fees for this course are above.
For courses with Professional Placement, the fee for the placement year can be viewed in our Fees and Funding section. The placement fee published is for the relevant academic year stated in the table. This fee is subject to annual increases but will not increase by more than the fee caps as prescribed by the Office for Students or such other replacing body.
* The fees shown above apply for Year 1 of the degree from 2025/26 onwards (fees may rise in line with inflation for future academic years). For full-time programmes of a duration of more than one academic year, the published fee is an annual fee, payable each year, for the duration of the programme. Your annual tuition fees cover your first attempt at all of the modules necessary to complete that academic year. A re-study of any modules will incur additional charges calculated by the number of credits. Home tuition fees may be subject to annual increases but will not increase by more than the fee caps as prescribed by the Office for Students or such other replacing body. Full-time taught International fees are subject to an annual increase and are published in advance for the full duration of the programme.
Eligible UK students can apply to the Government for a tuition loan, which is paid direct to the University. This has a low interest-rate which is charged from the time the first part of the loan is paid to the University until you have repaid it.
Scholarships and bursaries
For students interested in studying this course at Kingston, there are several opportunities to seek funding support.

Additional course costs
Some courses may require additional costs beyond tuition fees. When planning your studies, you’ll want to consider tuition fees, living costs, and any extra costs that might relate to your area of study.
Your tuition fees include costs for teaching, assessment and university facilities. So your access to libraries, shared IT resources and various student support services are all covered. Accommodation and general living expenses are not covered by these fees.
Where applicable, additional expenses for your course may include:
Our libraries have an extensive collection of books and journals, as well as open-access computers and laptops available to rent. However, you may want to buy your own computer or personal copies of key textbooks. Textbooks may range from ÂŁ50 to ÂŁ250 per year. And a personal computer can range from ÂŁ100 to ÂŁ3,000 depending on your course requirements.
While most coursework is submitted online, some modules may require printed copies. You may want to allocate up to £100 per year for hard-copies of your coursework. It’s worth noting that 3D printing is never compulsory. So if you choose to use our 3D printers, you’ll need to pay for the material. This ranges from 3p per gram to 40p per gram.
Kingston University will pay for all compulsory field trips. Fees for optional trips can range from ÂŁ30 to ÂŁ350 per trip.
Your tuition fees don’t cover travel costs. To save on travel costs, you can use our free intersite bus service. This route links the campuses and halls of residence with local train stations - Surbiton, Kingston upon Thames, and Norbiton.
If you choose to do a placement year, travel costs will vary depending on your location. These costs could be up to ÂŁ2,000.
Course changes and regulations
The information on this page reflects the currently intended course structure and module details. To improve your student experience and the quality of your degree, we may review and change the material information of this course. Find out more about course changes
Programme Specifications for the course are published ahead of each academic year.
Regulations governing this course can be found on our website.
What our students and graduates say
Every theory lesson is followed by a practical which really helps to consolidate the knowledge gained. Our lecturers make the lessons engaging and link each topic to the real world. Our lab equipment is brand new and state of the art which allows us to make the most of all our lab sessions.
Kingston University Lecturers are passionate, knowledgeable, and they curate a collaborative learning environment. There is always support available to help students achieve their highest potential. Kingston University provides countless opportunities to learn and grow, both professionally and personally.
Key information
The scrolling banner below displays some key factual data about this course (including different course combinations or delivery modes of this course where relevant).