Aviation Engineering BEng (Hons)

Teaching Excellence Framework (TEF) Gold award

Teaching Excellence Framework (TEF) Gold award

Our commitment to high quality teaching has been recognised with a TEF Gold rating. The University has received an overall rating of Gold, as well as securing a Gold award in the framework's two new student experience and student outcomes categories.

Why choose this course?

This is an ideal degree for anyone considering an engineering career in aviation. It will prepare you to work in aircraft maintenance, airworthiness, aviation management, logistics, systems integration, design, support, manufacturing, and air transport economics.

Studies include aerodynamics, propulsion, structures and materials, analysis of structures using FEA & CAD, science and the performance of aircraft. Through practical work in laboratories and workshops, you will apply the engineering principles you learn.

This degree will also develop career skills such as effective communication, presenting, team-working, planning and project management.

If you are studying in Sri Lanka please go to our international partner institutions page.

Attendance UCAS code Year of entry
3 years full time H450 2025
4 years full time with professional placement H451 2025

Please note: Teaching on this course may take place on more than one KU campus.

Main Location Roehampton Vale

Reasons to choose Kingston University

  • This course aligns with the UK Standard for Professional Engineering Competence (UK-SPEC) and meets the academic requirements for Incorporated Engineering (IEng) Membership of the Royal Aeronautical Society (RAeS).
  • You will be able to enhance your learning through an industrial placement with an approved employer. 
  • We have a successful history of providing graduates to the aviation industry, especially around Heathrow and Gatwick airports.

What you will study

Year 1

Year 2

Year 3

In Year 1, you will acquire the fundamental engineering knowledge and skills building a solid foundation for students to undertake a deeper study in Year 2. You will have the opportunity to carry out hands-on practical work in laboratories and workshops throughout the programme. Most modules are designed to develop key employability skills such as communication, presentation, team-working, planning and project management.

In Year 1, there is a clear structure and guidance for your learning, with an emphasis on the acquisition of fundamental engineering knowledge and skills (e.g. Mathematics and IT), practical skills, design skills and the initial development of Future Skills.

Core modules

Navigate for the Professional Engineer

15 credits

Students are introduced to their course learning aims and consider their anticipated learning targets from induction to graduation. Students are guided to identify and take ownership of their personal academic journey through the development and application of academic skills aligned to KU Graduate Attributes and their discipline-specific professional body learning outcomes.

Students are tutored in a range of learning to learn techniques, are introduced to assessment for learning and the role of feedback, reflection and feedforward as an integrated part of their learning journey. This will be supported through active engagement in the KU Navigate Programme enabling students to understand and begin to develop a design thinking approach to Future Skills development.

Engineering Mathematics

15 credits

The aim of this module is to provide a thorough background in engineering mathematics and equip students with the mathematical skills essential for solving engineering problems. The topics introduced will serve as basic tools for studies in many engineering subjects. This comprises algebra, functions, statistics and probability, trigonometry, calculus, differential equations and vectors.

Students will be empowered to understand and be able to use the language and methods of mathematics in the description, analysis and design of engineering systems. The emphasis is on using mathematical tools to solve engineering problems. The computing software used will typically include MATLAB and Excel.

Thermodynamics and Fluid Mechanics

15 credits

This module introduces mechanical engineering students to the fundamentals of fluid mechanics and thermodynamics. The fluid mechanics section covers the fundamental properties of fluids along with the main basic conservation equations and their engineering applications. It also introduces the concept of dimensions and the SI units of measurement.

Thermodynamics section deals with the relationship between heat and other forms of energy. A variety of topics of engineering and science are dependent on various thermodynamics concepts. You can find applications of thermodynamics everywhere, such as in internal combustion engine or sitting in a room with the air conditioning. The thermodynamics laws that govern the behaviour of various systems will be discussed in depth as they find applications in a variety of disciplines.

The module is primarily delivered through lectures supported by tutorial sessions and laboratory-based practical sessions.

Introduction to the Aviation Industry

15 credits

This module introduces the students to the basic knowledge of the aviation industry and the options for various career opportunities. The module is mainly delivered through face-to-face lectures and some tutorials. The module also introduces students to the challenges the industry may face in the future.

Engineering Design and Manufacture

30 credits

The principal aim of this module is to provide students with a flavour of what is involved in engineering design and to develop the good academic and professional practice needed to succeed during the course and attain professional status.

The module introduces the key aspects involved in planning a project from start to finish, design processes incorporating a sustainability agenda, building an awareness of the interactions across various disciplines, regulatory frameworks and Health and Safety procedures.

The module develops good academic and professional practice by developing skills in self-reflection and recording professional development.

The basic principles of measurement and manufacturing processes in a workshop and testing environment are also addressed in the module.

The module also involves the IMechE Design Challenge as a part of the curriculum, to provide the students with a flavour of how to work in teams to produce engineering artefacts that are capable of accomplishing tasks, as well as developing interpersonal skills in order to enhance the student's employability.

Engineering Mechanics and Materials

30 credits

The module introduces students to the fundamentals of structural analysis (statics and dynamics) and the mechanical behaviour of a broad range of engineering materials. The mechanics part provides an understanding of the behaviour of particles and rigid bodies whilst stationary and in motion. Bodies such as trusses in equilibrium are studied and the external and internal parameters including force, moment, stress, or strain are defined and calculated.

The analysis of structural components will be developed with theoretical and numerical skills that are necessary in the design of real structures. This section also introduces the dynamics of particles and rigid bodies with their engineering applications. Material test methods will be used to determine the deformations and failures of the various engineering materials.

A selection of materials for engineering applications, such as metals, alloys, polymers, and composites, will be studied including their carbon footprint and their impact on the environment. The module is primarily delivered through lectures supported by tutorial sessions and laboratory-based practical sessions.

In Year 2, there will be an increased expectation of independent study, supported by a reduced emphasis on the use of traditional lectures. You will study the engineering principles underpinning aircraft technologies such as aerodynamics, propulsion, structures and materials science and performance of aircraft. You will study aircraft maintenance operations, aircraft systems, airworthiness, and air transport economics. You will also learn to design and make aircraft structures using computational skills such as CAD and FEA. You will have problems based learning and interdisciplinary group work to tackle a live, real-world problem supplied by a well-known company or organisation.

Core modules

Exploring Engineering Project Management

15 credits

This module considers the principles and practices for the design and management of engineering projects. The nature of engineering project management is discussed in the context of constraints on quality, time, risk, and sustainability. The module broadens the student's knowledge of how organisations undertake and monitor projects.

The module is skills-rich, including the development of teamworking, interpersonal and interdisciplinary skills, critical self-reflection, communication and presentation, time management, and the ability to organise, strategize and prioritise.

A key element of this module will be the participation in an inter-disciplinary design thinking project. Students will contextualise their subject-specific knowledge, skills and behaviours as an interdisciplinary team member charged with developing a solution to a designated sustainability challenge. The teamwork project enables students to demonstrate their ability to explore and contextualise their subject specific knowledge and helps prepare them for their individual project in Level 6.

Aviation Safety

15 credits

The module aims to familiarise students with the knowledge of basic theories and methodologies for safety analysis and risk assessment in different aviation environments and with the concept and practicality of a ‘Safety Management System'. It also used to reinforce the applied statistics that has been taught earlier in the module.

Aircraft Dynamics and Control

15 credits

Aviation Operations

15 credits

The purpose of this module is to introduce students to the applied mathematical techniques that enable operational organisations to achieve efficiency and productivity. The focus of the teaching is on airline operations, but the techniques taught are equally applicable to other transport industries which share similar operational challenges. It is also used to reinforce the applied statistics that have been taught earlier in the module.

Aerospace Engineering

30 credits

Aircraft Systems

30 credits

In Year 3, you will study advanced materials and structures, propulsion and performance, aircraft maintenance, airworthiness and air transport economics. The assessment tasks in Year 3 focus on the real world-engineering activities that enhance students' employability. In Year 3, you will also learn about maintenance logistics, maintenance cost drivers and the key aspects of project planning. You will apply business methods to assess the economic and financial aspects of air transport and/or engineering projects. In this final year, you will be expected to select and apply requisite practical skills in your own independent research work in the Individual Project module.

Core modules

Applying Business Management

15 credits

Students will demonstrate the ability to apply their developing professional skills competencies in their chosen area and will ensure they have a broad understanding of the business environment in which professional activities are undertaken. The module will develop the students' technical, management and interpersonal skills required to perform in a team environment and prepare the students for employment and entrepreneurship.

Students will participate in Kingston University's Bright Ideas competition where they will work together as a team to develop a business idea of their choice. To do this they will need to interact with relevant stakeholders outside the University.

Students will be guided to interact with professional and learning communities beyond the university and reflect on these interactions. This may include participation in co-curricular events such as subject-specific and career development events (e.g. talks, workshops, speed interviews), networking opportunities offered by the subject-specific professional bodies, exploring pathways to professional chartership/membership, leveraging interactions with professionals in the development of the final year research project and, reflecting on the co-benefits of these interactions.

Aircraft Propulsion and Performance

15 credits

This module is designed for students from a range of aerospace related programmes. It provides understanding of the principles of aerodynamics and thermodynamics and how these can be used to perform propulsion calculation and performance analysis. Performance of both fixed wing and rotary wing aircraft configurations are studies in this module.

Advanced Materials and Aircraft Structures

15 credits

This module provides an understanding of the fundamentals and the application of advanced engineering materials for aerospace applications. This module also covers an introduction to aircraft structures and engineering beam theory. The module covers approach to design components based on materials properties are demonstrated and areas of the design process are methodically examined. The module is primarily delivered through interactive lectures, tutorials, and problem-solving, flipped classes.

Aircraft Maintenance Group Project

30 credits

Air Transport Economics

15 credits

Throughout their studies, students have studied material that has been focused on a specific role or roles within the air transport industry whether it be aircraft design, maintenance, operations or repair and overhaul. The aim of this module is to take a step back and explore how employers within the various sectors of the air transport industry combine all these functions in order to make a profit.

Individual Project

30 credits

Working on a topic of their own choosing, the student, with minimal guidance from their supervisor, should apply approximately 285 hours of individual time into the analysis of the problem and determination of the best solution or course of action. That analysis can take a variety of forms ranging from an in-depth comparison of a number of already documented potential solutions to the collection and comparison of experimental and theoretical data. The topic investigated should ideally be of an aircraft operational or engineering nature.

Department of Aerospace and Aircraft Engineering

Future Skills

Knowledge to give you the edge

Embedded within every course curriculum and throughout the whole Kingston experience, Future Skills will play a role in shaping you to become a future-proof graduate, providing you with the skills most valued by employers such as problem-solving, digital competency, and adaptability.

As you progress through your degree, you'll learn to navigate, explore and apply these graduate skills, learning to demonstrate and articulate to employers how future skills give you the edge.

At Kingston University, we're not just keeping up with change, we're creating it.

A female engineering student, in the engineering lab.

Entry requirements

Typical offer 2025

  • 112-128 UCAS points from three A-levels or equivalent Level 3 qualifications. A-levels to include Mathematics and a Science subject.

Alternatively, BTEC Extended Diploma in Engineering or related subject such as Aerospace/Aeronautical/Electrical/Electronic/Manufacturing and Mechanical Engineering will be considered (grades DMM).

Typical offer 2024

  • 112-128 UCAS points from three A-levels or equivalent Level 3 qualifications. A-levels to include Mathematics and a science subject.

Alternatively, BTEC Extended Diploma in Engineering or related subject such as Aerospace/Aeronautical/Electrical/Electronic/Manufacturing and Mechanical Engineering will be considered (grades DMM).

Candidates are normally required to hold five GCSE subjects at grade C/4 or above, including Mathematics and English Language.

Additional requirements

Entry on to this course does not require an interview, entrance test, audition or portfolio.

Alternative routes

We will consider a range of alternative Level 3 qualifications such as an Access Course in a relevant engineering subject which has been passed with 112 UCAS points and all mathematics and physics units have been undertaken at level 3 and Distinction grades achieved.

Applications from those that have undertaken an Engineering foundation year will also be considered.

International

We welcome applications from International Applicants. View our standard entry requirements from your country.

All non-UK applicants must meet our English language requirements. For this course it is Academic IELTS of 6.0, with no element below 5.5.

Country-specific information

You will find more information on country specific entry requirements in the International section of our website.

Find your country:

Typical offer and UCAS points explained

Like most universities, we use the UCAS Tariff point system for our course entry requirements.

Find out more about UCAS Tariff points and see how A-level, AS level, BTEC Diploma and T-level qualifications translate to the points system.

Teaching and assessment

Scheduled learning and teaching on this course includes timetabled activities including lectures, seminars and small group tutorials.

It may also include placements, project work, workshops, workshops in computer labs, and laboratory workshops.

Guided independent study (self-managed time)

Outside the scheduled learning and teaching hours, you will learn independently through self-study which will involve reading articles and books, working on projects, undertaking research, preparing for and completing your work for assessments. Some independent study work may need to be completed on-campus, as you may need to access campus-based facilities such as studios and labs.

Academic support

Our academic support team here at Kingston University provides help in a range of areas.

Dedicated personal tutor

When you arrive, we'll introduce you to your personal tutor. This is the member of academic staff who will provide academic guidance, be a support throughout your time at Kingston and show you how to make the best use of all the help and resources that we offer at Kingston University.

Your workload

A course is made up of modules, and each module is worth a number of credits. You must pass a given number of credits in order to achieve the award you registered on, for example 360 credits for a typical undergraduate course or 180 credits for a typical postgraduate course. The number of credits you need for your award is detailed in the programme specification which you can access from the link at the bottom of this page.

One credit equates to 10 hours of study. Therefore 120 credits across a year (typical for an undergraduate course) would equate to 1,200 notional hours. These hours are split into scheduled and guided. On this course, the percentage of that time that will be scheduled learning and teaching activities is shown below for each year of study. The remainder is made up of guided independent study.

  • Year 1: 31% scheduled learning and teaching
  • Year 2: 32% scheduled learning and teaching
  • Year 3: 21% scheduled learning and teaching

The exact balance between scheduled learning and teaching and guided independent study will be informed by the modules you take.

Your course will primarily be delivered in person. It may include delivery of some activities online, either in real time or recorded.

How you will be assessed

Types of assessment

  • Year 1: Coursework 50%; exams 45%; practical 5%
  • Year 2: Coursework 50%; exams 40%; practical 10%
  • Year 3: Coursework 60%; exams 30%; practical 10%

Please note: the above breakdowns are a guide calculated on core modules only. If your course includes optional modules, this breakdown may change to reflect the modules chosen.

Feedback summary

We aim to provide feedback on assessments within 20 working days.

Your timetable

Your individualised timetable is normally available to students within 48 hours of enrolment. Whilst we make every effort to ensure timetables are as student-friendly as possible, scheduled learning and teaching can take place on any day of the week between 9am and 6pm. For undergraduate students, Wednesday afternoons are normally reserved for sports and cultural activities, but there may be occasions when this is not possible. Timetables for part-time students will depend on the modules selected.

Class sizes

To give you an indication of class sizes, this course normally enrols 15 students and lecture sizes are normally 15–140.  However, this can vary by module and academic year.

Who teaches this course?

The course is taught by the Department of Aerospace and Aircraft Engineering. Staff have a wide range of experience across research and industry and continue to practise and research at the cutting edge of their discipline. This ensures that our courses are current and industry informed, ensuring you get the most relevant and up-to-date education possible.

We have a dedicated campus for engineering students at Roehampton Vale, a short journey from Kingston town centre and close to Richmond Park.

We offer a wide range of specialist facilities on site, supported with software technology and laboratory technicians.

Renowned companies are involved in course delivery, placements, final year projects and industry talks. These companies range from global leaders KLM Engineering, Marshall Aerospace and the Defence Group, Airbus UK, Astrium Eads, GE Aircraft, and Lockheed, to small and medium enterprises such as Aero Optimal, Aircraft Research Associates, and Aim Aviation.

Postgraduate students may run, or assist in, lab sessions and may also contribute to the teaching of seminars under the supervision of the module leader.

Facilities

There is a wide range of facilities for practical work at our Penrhyn Road campus, where this course is based. You will have access to a modern environment with the latest technology and industry-standard equipment, including:

  • extensive materials and structures facility for concrete, masonry, steel and timber;
  • geotechnical and hydraulics testing facilities; and
  • surveying equipment, such as satellite global-positioning systems.

Dedicated computer-aided design facilities include:

  • a range of CAD/CAM packages, such as Ideas, SolidWorks and AutoCad;
  • finite element analysis
  • computational fluid dynamics; and
  • virtual instrumentation.

Course fees and funding

2025/26 fees for this course

The tuition fee you pay depends on whether you are assessed as a 'Home' (UK), 'Islands' or 'International' student. In 2025/26 the fees for this course are:

 Fee category Amount
Home (UK students) £9,250*
International Year 1 (2025/26): £18,500
Year 2 (2026/27): £19,200
Year 3 (2027/28): £19,900

For courses with Professional Placement, the fee for the placement year can be viewed on the undergraduate fees table. The placement fee published is for the relevant academic year stated in the table. This fee is subject to annual increases but will not increase by more than the fee caps as prescribed by the Office for Students or such other replacing body.

* For full-time programmes of a duration of more than one academic year, the published fee is an annual fee, payable each year, for the duration of the programme. Your annual tuition fees cover your first attempt at all of the modules necessary to complete that academic year. A re-study of any modules will incur additional charges calculated by the number of credits. Home tuition fees may be subject to annual increases but will not increase by more than the fee caps as prescribed by the Office for Students or such other replacing body. Full-time taught International fees are subject to an annual increase and are published in advance for the full duration of the programme.

Eligible UK students can apply to the Government for a tuition loan, which is paid direct to the University. This has a low interest-rate which is charged from the time the first part of the loan is paid to the University until you have repaid it.

2024/25 fees for this course

The tuition fee you pay depends on whether you are assessed as a 'Home' (UK), 'Islands' or 'International' student. In 2024/25 the fees for this course are:

 Fee category Amount
Home (UK students) £9,250*
International Year 1 (2024/25): £17,800
Year 2 (2025/26): £18,500
Year 3 (2026/27): £19,200

For courses with Professional Placement, the fee for the placement year can be viewed on the undergraduate fees table. The placement fee published is for the relevant academic year stated in the table. This fee is subject to annual increases but will not increase by more than the fee caps as prescribed by the Office for Students or such other replacing body.

* For full-time programmes of a duration of more than one academic year, the published fee is an annual fee, payable each year, for the duration of the programme. Your annual tuition fees cover your first attempt at all of the modules necessary to complete that academic year. A re-study of any modules will incur additional charges calculated by the number of credits. Home tuition fees may be subject to annual increases but will not increase by more than the fee caps as prescribed by the Office for Students or such other replacing body. Full-time taught International fees are subject to an annual increase and are published in advance for the full duration of the programme.

Eligible UK students can apply to the Government for a tuition loan, which is paid direct to the University. This has a low interest-rate which is charged from the time the first part of the loan is paid to the University until you have repaid it.

Note for EU students: UK withdrawal from the European Union

The Government has announced that new students from the European Union and Swiss Nationals starting their course after August 2021 will no longer be eligible for a student loan in England for Undergraduate or Postgraduate studies from the 2021/22 academic year. This decision only applies to new EU students starting after 2021/22. If you are an existing/continuing EU student, you will continue to be funded until you graduate or withdraw from your course.

Need to know more?

Our undergraduate fees and funding section provides information and advice on money matters.

Additional costs

Depending on the programme of study, there may be extra costs that are not covered by tuition fees which students will need to consider when planning their studies. Tuition fees cover the cost of your teaching, assessment and operating University facilities such as the library, access to shared IT equipment and other support services. Accommodation and living costs are not included in our fees. 

Where a course has additional expenses, we make every effort to highlight them. These may include optional field trips, materials (e.g. art, design, engineering), security checks such as DBS, uniforms, specialist clothing or professional memberships.

Textbooks

Our libraries are a valuable resource with an extensive collection of books and journals as well as first-class facilities and IT equipment. You may prefer to buy your own copy of key textbooks; this can cost between £50 and £250 per year.

Computer equipment

There are open-access networked computers available across the University, plus laptops available to loan. You may find it useful to have your own PC, laptop or tablet which you can use around campus and in halls of residence. Free WiFi is available on each campus. You may wish to purchase your own computer, which can cost between £100 and £3,000 depending on your course requirements.

Photocopying and printing

In the majority of cases, written coursework can be submitted online. There may be instances when you will be required to submit work in a printed format. Printing, binding and photocopying costs are not included in your tuition fees, this may cost up to £100 per year.

Travel

Travel costs are not included in your tuition fees but we do have a free intersite bus service which links the campuses, Surbiton train station, Kingston upon Thames train station, Norbiton train station and halls of residence.

Placements

If the placement year option is chosen, during this year travel costs will vary according to the location of the placement, and could be from £0 to £2,000.

Field trips

All field trips that are compulsory to attend to complete your course are paid for by the university. There is an optional trip to Duxfold which can cost £10-£20.

3D printing

It is not compulsory as part of your degree to print projects using the 3D printer. However if you wish to, you will need to pay for the material. Printing costs are estimated by weight (cheapest material is 3p per gram and most expensive material is 40p per gram).

Personal Protective Equipment (PPE)

Kingston University will supply you with a lab coat and safety goggles at the start of the year. A £10 voucher will be supplied to help cover the cost of the safety boots when purchasing with our supplier Activity Work Wear. Safety boots can range in cost between £25 and £100.

After you graduate

Careers and progression

Career opportunities include maintenance and licensed aircraft engineering, certification, quality assurance, logistics, planning, design, technical services, production and control engineering. Employers are often the military, civil aviation and aerospace companies.

Careers and recruitment advice

The Faculty has a specialist employability team. It provides friendly and high-quality careers and recruitment guidance, including advice and sessions on job-seeking skills such as CV preparation, application forms and interview techniques. Specific advice is also available for international students about the UK job market and employers' expectations and requirements.

The team runs employer events throughout the year, including job fairs, key speakers from industry and interviews on campus. These events give you the opportunity to hear from, and network with, employers in an informal setting.

Employability preparation at Kingston University

In addition to building expertise in your own discipline, our courses will also help you to develop key transferable skills that you'll need for professional life or further study once you graduate.  As well as a range of careers and employability activities at Kingston, we also offer you the chance to apply and develop your skills in live contexts as an integral part of your course. Opportunities include:

  • placements;
  • working or studying abroad;
  • volunteering;
  • peer mentoring roles; and
  • internship opportunities within and outside the University.

In your final year, you'll get the opportunity to complete a major 'capstone' project where you can apply the knowledge and skills you have acquired to a range of real issues in different contexts. This is a great way to learn and is a valuable bridge to employment or further research at masters level.

Courses available after you graduate

If you decide that you would like to go on to postgraduate study after your undergraduate course, we offer a 10% discount on our postgraduate course tuition fees to our alumni.

Accreditation

The proposed course can satisfy the requirements of the Royal Aeronautical Society and UK-Spec of the Engineering Council. Incorporated Engineer (IEng) accreditation for the programme will be sought from the Royal Aeronautical Society in the spring of 2019. Students who have enrolled in the course before the accreditation will be fully recognised by the PSRB.

What our students say

I decided to enrol at Kingston University as it was one of a select few universities that had a wide range of aerospace courses in both aeronautic and astronautic fields.

In my final year I was able to join the international society, getting to know individuals of different faiths, origins and interests. Aerospace engineering at Kingston University has truly contributed most significantly to where I'm currently at, where I attained a first class in my final year dissertation. 

I also won a runner-up cash prize and an award on my graduation day for the individual engineering poster competition.

Soon after starting my final year, I applied and received conditional job offers from Thales UK, Airbus UK and Shell. I'm now currently working as a systems engineer within flight simulation. I write software for flight simulators which often involves travelling across the UK and the world, most notably northern England, Scotland and Dubai. Having been back at the University since leaving, I've been providing students with interview support at Thales. Two of those I supported are now working full time in the avionics division, in both apprenticeship and graduate roles.

In my spare time I fly light aircraft, after carrying out flying lessons, most notably in Cessna 152s and Piper 28s. 

I've also supported Thales with flying drones during open days, and am now taking my drone licence.

William Arinz – Aviation Engineering (previously Aerospace Engineering BSc)

I come from a small town in India with big dreams to achieve. From a very young age, I wanted to go to London to further my studies. There is a profound heritage about aerospace in Kingston University and therefore I chose to study here. I will be always grateful to the support I received from Kingston University and especially to the course director, Dr Sing Lo. The University helped me to grow both academically and professionally. I started working with Starling Aerospace in 2016, before even completing my MSc and in October 2018 I joined Pall Corporation as a certification engineer. I believe that I am made in Kingston.

Samraggnee – Aviation Engineering (previously Aerospace Engineering BSc)

Key information set

The scrolling banner(s) below display some key factual data about this course (including different course combinations or delivery modes of this course where relevant).

Course changes and regulations

The information on this page reflects the currently intended course structure and module details. To improve your student experience and the quality of your degree, we may review and change the material information of this course. Course changes explained.

Programme Specifications for the course are published ahead of each academic year.

Regulations governing this course can be found on our website.